ترغب بنشر مسار تعليمي؟ اضغط هنا

A Volume-Limited Sample of Ultracool Dwarfs. I. Construction, Space Density, and a Gap in the L/T Transition

104   0   0.0 ( 0 )
 نشر من قبل William Best
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new volume-limited sample of L0-T8 dwarfs out to 25 pc defined entirely by parallaxes, using our recent measurements from UKIRT/WFCAM along with Gaia DR2 and literature parallaxes. With 369 members, our sample is the largest parallax-defined volume-limited sample of L and T dwarfs to date, yielding the most precise space densities for such objects. We find the local L0-T8 dwarf population includes $5.5%pm1.3%$ young objects ($lesssim$200 Myr) and $2.6%pm1.6%$ subdwarfs, as expected from recent studies favoring representative ages $lesssim$4 Gyr for the ultracool field population. This is also the first volume-limited sample to comprehensively map the transition from L to T dwarfs (spectral types $approx$L8-T4). After removing binaries, we identify a previously unrecognized, statistically significant (>4.4$sigma$) gap $approx$0.5 mag wide in $(J-K)_{rm MKO}$ colors in the L/T transition, i.e., a lack of such objects in our volume-limited sample, implying a rapid phase of atmospheric evolution. In contrast, the most successful models of the L/T transition to date $-$ the hybrid models of Saumon & Marley (2008) $-$ predict a pile-up of objects at the same colors where we find a deficit, demonstrating the challenge of modeling the atmospheres of cooling brown dwarfs. Our sample illustrates the insights to come from even larger parallax-selected samples from the upcoming Legacy Survey of Space and Time (LSST) by the Vera Rubin Obsevatory.



قيم البحث

اقرأ أيضاً

We present a volume-limited, spectroscopically-verified sample of M7$-$L5 ultracool dwarfs within 25,pc. The sample contains 410 sources, of which $93%$ have trigonometric distance measurements ($80%$ from textit{Gaia} DR2), and $81%$ have low-resolu tion ($Rsim120$), near-infrared (NIR) spectroscopy. We also present an additional list of 60 sources which may be M7$-$L5 dwarfs within 25,pc when distance or spectral type uncertainties are taken into account. The spectra provide NIR spectral and gravity classifications, and we use these to identify young sources, red and blue $J-K_S$ color outliers, and spectral binaries. We measure very low gravity and intermediate gravity fractions of $2.1^{+0.9}_{-0.8}%$ and $7.8^{+1.7}_{-1.5}%$, respectively; fractions of red and blue color outliers of $1.4^{+0.6}_{-0.5}$% and $3.6^{+1.0}_{-0.9}$%, respectively; and a spectral binary fraction of $1.6^{+0.5}_{-0.5}%$. We present an updated luminosity function for M7$-$L5 dwarfs continuous across the hydrogen burning limit that agrees with previous studies. We estimate our completeness to range between $69-80%$ when compared to an isotropic model. However, we find that the literature late-M sample is severely incomplete compared to L dwarfs, with completeness of $62^{+8}_{-7}%$ and $83^{+10}_{-9}%$, respectively. This incompleteness can be addressed with astrometric-based searches of ultracool dwarfs with textit{Gaia} to identify objects previously missed by color- and magnitude-limited surveys.
We identify and investigate known ultracool stars and brown dwarfs that are being observed or indirectly constrained by the Gaia mission. These objects will be the core of the Gaia ultracool dwarf sample composed of all dwarfs later than M7 that Gaia will provide direct or indirect information on. We match known L and T dwarfs to the Gaia first data release, the Two Micron All Sky Survey and the Wide-field Infrared Survey Explorer AllWISE survey and examine the Gaia and infrared colours, along with proper motions, to improve spectral typing, identify outliers and find mismatches. There are 321 L and T dwarfs observed directly in the Gaia first data release, of which 10 are later than L7. This represents 45 % of all the known LT dwarfs with estimated Gaia G magnitudes brighter than 20.3 mag. We determine proper motions for the 321 objects from Gaia and the Two Micron All Sky Survey positions. Combining the Gaia and infrared magnitudes provides useful diagnostic diagrams for the determination of L and T dwarf physical parameters. We then search the Tycho-Gaia astrometric solution Gaia first data release subset to find any objects with common proper motions to known L and T dwarfs and a high probability of being related. We find 15 new candidate common proper motion systems.
We conducted a volume-limited survey at 4.9 GHz of 32 nearby ultracool dwarfs with spectral types covering the range M7 -- T8. A statistical analysis was performed on the combined data from the present survey and previous radio observations of ultrac ool dwarfs. Whilst no radio emission was detected from any of the targets, significant upper limits were placed on the radio luminosities that are below the luminosities of previously detected ultracool dwarfs. Combining our results with those from the literature gives a detection rate for dwarfs in the spectral range M7 -- L3.5 of ~ 9%. In comparison, only one dwarf later than L3.5 is detected in 53 observations. We report the observed detection rate as a function of spectral type, and the number distribution of the dwarfs as a function of spectral type and rotation velocity. The radio observations to date point to a drop in the detection rate toward the ultracool dwarfs. However, the emission levels of detected ultracool dwarfs are comparable to those of earlier type active M dwarfs, which may imply that a mildly relativistic electron beam or a strong magnetic field can exist in ultracool dwarfs. Fast rotation may be a sufficient condition to produce magnetic fields strengths of several hundreds Gauss to several kilo Gauss, as suggested by the data for the active ultracool dwarfs with known rotation rates. A possible reason for the non-detection of radio emission from some dwarfs is that maybe the centrifugal acceleration mechanism in these dwarfs is weak (due to a low rotation rate) and thus cannot provide the necessary density and/or energy of accelerated electrons. An alternative explanation could be long-term variability, as is the case for several ultracool dwarfs whose radio emission varies considerably over long periods with emission levels dropping below the detection limit in some instances.
131 - Trent J. Dupuy 2012
We present the first results from our high-precision infrared (IR) astrometry program at the Canada-France-Hawaii Telescope. We measure parallaxes for 83 ultracool dwarfs (spectral types M6--T9) in 49 systems, with a median uncertainty of 1.1 mas (2. 3%) and as good as 0.7 mas (0.8%). We provide the first parallaxes for 48 objects in 29 systems, and for another 27 objects in 17 systems, we significantly improve upon published results, with a median (best) improvement of 1.7x (5x). Three systems show astrometric perturbations indicative of orbital motion; two are known binaries (2MASSJ0518-2828AB and 2MASSJ1404-3159AB) and one is spectrally peculiar (SDSSJ0805+4812). In addition, we present here a large set of Keck adaptive optics imaging that more than triples the number of binaries with L6--T5 components that have both multi-band photometry and distances. Our data enable an unprecedented look at the photometric properties of brown dwarfs as they cool through the L/T transition. Going from approxL8 to approxT4.5, flux in the Y and J bands increases by approx0.7 mag and approx0.5 mag, respectively (the Y- and J-band bumps), while flux in the H, K, and L bands declines monotonically. This wavelength dependence is consistent with cloud clearing over a narrow range of temperature, since condensate opacity is expected to dominate at 1.0--1.3 micron. Interestingly, despite more than doubling the near-IR census of L/T transition objects, we find a conspicuous paucity of objects on the color--magnitude diagram just blueward of the late-L/early-T sequence. This L/T gap occurs at MKO(J-H) = 0.1--0.3 mag, MKO(J-K) = 0.0--0.4 mag, and implies that the last phases of cloud evolution occur rapidly. Finally, we provide a comprehensive update to the absolute magnitudes of ultracool dwarfs as a function of spectral type using a combined sample of 314 objects.
Brown dwarf spectra are rich in information revealing of the chemical and physical processes operating in their atmospheres. We apply a recently developed atmospheric retrieval tool to an ensemble of late T-dwarf (600-800K) near infrared spectra. Wit h these spectra we are able to place direct constraints the molecular abundances of H$_2$O, CH$_4$, CO, CO$_2$, NH$_3$, H$_2$S, and Na+K, gravity, thermal structure (and effective temperature), photometric radius, and cloud optical depths. We find that ammonia, water, methane, and the alkali metals are present and well constrained in all 11 objects. From the abundance constraints we find no significant trend in the water, methane, or ammonia abundances with temperature, but find a very strong ($>$25$sigma$) increasing trend in the alkali metal abundances with effective temperature, indicative of alkali rainout. We also find little evidence for optically thick clouds. With the methane and water abundances, we derive the intrinsic atmospheric metallicity and carbon-to-oxygen ratios. We find in our sample, that metallicities are typically sub solar and carbon-to-oxygen ratios are somewhat super solar, different than expectations from the local stellar population. We also find that the retrieved vertical thermal profiles are consistent with radiative equilibrium over the photospheric regions. Finally, we find that our retrieved effective temperatures are lower than previous inferences for some objects and that our radii are larger than expectations from evolutionary models, possibly indicative of un-resolved binaries. This investigation and methodology represents a paradigm in linking spectra to the determination of the fundamental chemical and physical processes governing cool brown dwarf atmospheres.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا