ﻻ يوجد ملخص باللغة العربية
We present In NMR measurements in a novel thermodynamic phase of CeCoIn5 in high magnetic field, where exotic superconductivity coexists with the incommensurate spin-density wave order. We show that the NMR spectra in this phase provide direct evidence for the emergence of the spatially distributed normal quasiparticle regions. The quantitative analysis for the field evolution of the paramagnetic magnetization and newly-emerged low-energy quasiparticle density of states is consistent with the nodal plane formation, which is characterized by an order parameter in the Fulde-Ferrell-Larkin-Ovchinnikov (FFLO) state. The NMR spectra also suggest that the spatially uniform spin-density wave is induced in the FFLO phase.
We report on a study of thermal Hall conductivity k_xy in the superconducting state of CeCoIn_5. The scaling relation and the density of states of the delocalized quasiparticles, both obtained from k_xy, are consistent with d-wave superconducting sym
In the heavily hole-doped iron-based superconductors $A$Fe$_2$As$_2$ ($A=$ K, Rb, and Cs), the electron effective mass increases rapidly with alkali-ion radius. To study how the mass enhancement affects the superconducting state, we measure the Londo
Superconducting (SC) gap symmetry and magnetic response of cubic U0.97Th0.03Be13 are studied by means of high-precision heat-capacity and dc magnetization measurements using a single crystal, in order to address the long-standing question of its seco
Using small-angle neutron scattering, we have studied the flux-line lattice (FLL) in superconducting CeCoIn5. The FLL is found to undergo a first-order symmetry and reorientation transition at ~0.55 T at 50 mK. The FLL form factor in this material is
When exposed to high magnetic fields, certain materials manifest an exotic superconducting (SC) phase that attracts considerable attention. A proposed explanation of the origin of the high-field phase is the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) sta