ﻻ يوجد ملخص باللغة العربية
In the heavily hole-doped iron-based superconductors $A$Fe$_2$As$_2$ ($A=$ K, Rb, and Cs), the electron effective mass increases rapidly with alkali-ion radius. To study how the mass enhancement affects the superconducting state, we measure the London penetration depth $lambda(T)$ in clean crystals of $A$Fe$_2$As$_2$ down to low temperature $Tsim0.1$ K. In all systems, the superfluid stiffness $rho_s(T)=lambda^2(0)/lambda^2(T)$ can be approximated by a power-law $T$ dependence at low temperatures, indicating the robustness of strong momentum anisotropy in the superconducting gap $Delta(k)$. The power $alpha$ increases from $sim1$ with mass enhancement and approaches an unconventional exponent $alphasim 1.5$ in the heaviest CsFe$_2$As$_2$. This appears to be a hallmark of superconductors near antiferromagnetic quantum critical points, where the quasiparticles excited across the anisotropic $Delta(k)$ are significantly influenced by the momentum dependence of quantum critical fluctuations.
Superconductors close to quantum phase transitions often exhibit a simultaneous increase of electronic correlations and superconducting transition temperatures. Typical examples are given by the recently discovered iron-based superconductors. We inve
Unconventional superconductivity from heavy fermion (HF) is always observed in f-electron systems, in which Kondo physics between localized f-electrons and itinerant electrons plays an essential role. Whether HF superconductivity could be achieved in
We present In NMR measurements in a novel thermodynamic phase of CeCoIn5 in high magnetic field, where exotic superconductivity coexists with the incommensurate spin-density wave order. We show that the NMR spectra in this phase provide direct eviden
Superconducting (SC) gap symmetry and magnetic response of cubic U0.97Th0.03Be13 are studied by means of high-precision heat-capacity and dc magnetization measurements using a single crystal, in order to address the long-standing question of its seco
The magnetic properties of iron-based superconductors $A$Fe$_2$As$_2$ ($A=$K, Cs, and Rb), which are characterized by the V-shaped dependence of the critical temperature ($T_{rm c}$) on pressure ($P$) were studied by means of the muon spin rotation/r