ﻻ يوجد ملخص باللغة العربية
When exposed to high magnetic fields, certain materials manifest an exotic superconducting (SC) phase that attracts considerable attention. A proposed explanation of the origin of the high-field phase is the Fulde-Ferrel-Larkin-Ovchinnikov (FFLO) state. This state is characterized by inhomogeneous superconductivity, where the Cooper pairs have finite center-of-mass momenta. Recently, the high-field phase has been observed in FeSe, and it was deemed to originate from the FFLO state. Here, we synthesized FeSe single crystals with different levels of disorders. The level of disorder is expressed by the ratio of the mean free path to the coherence length and ranges between 35 and 1.2. The upper critical field $B_{rm{c}2}$ was systematically studied over a wide range of temperatures, which went as low as $sim$ 0.5 K, and magnetic fields, which went up to $sim$ 38 T along the $c$ axis and in the $ab$ plane. In the high-field region parallel to the $ab$ plane, an unusual SC phase was confirmed in all the crystals, and the phase was found to be robust to disorders. This result suggests that the high-filed SC state in FeSe may not be a FFLO state, which should be sensitive to disorders.
We report on the synthesis of superconducting single crystals of FeSe, and their characterization by X-ray diffraction, magnetization and resistivity. We have performed ac susceptibility measurements under high pressure in a hydrostatic liquid argon
We report flux free growth of superconducting FeSe single crystals by an easy and versatile high temperature melt and slow cooling method for first time. The room temperature XRD on the surface of the piece of such obtained crystals showed single 101
We have studied the intrinsic normal and superconducting properties of the oxypnictide LaFePO. These samples exhibit bulk superconductivity and the evidence suggests that stoichiometric LaFePO is indeed superconducting, in contrast to other reports.
Single crystals of RbOs2O6 have been grown from Rb2O and Os in sealed quartz ampoules. The crystal structure has been identified at room temperature as cubic with the lattice constant a = 10.1242(12) A. The anisotropy of the tetrahedral and octahedra
The results of the comprehensive ultrasonic research of high quality single crystals of FeSe are presented. Absolute values of sound velocities and their temperature dependences were measured; elastic constants and Debye temperature were calculated.