ﻻ يوجد ملخص باللغة العربية
Low temperature growth Pr0.7Ca0.3MnO3 (PCMO) thin film showed high performance in electric field induced resistance switching (RS). To understand the micro-mechanism of RS in Metal/PCMO/Metal devices, structure evolution of PCMO under external electric field monitored inside transmission electron microscope (TEM) were performed. Evolution of the modulation stripe in as-grown PCMO sample was investigated when applying electric field. The new-generated modulation stripe gradually disappeared. These results indicate that oxygen ion migration plays a key role in RS.
The polarity-dependent resistive-switching across metal-Pr0.7Ca0.3MnO3 interfaces is investigated. The data suggest that shallow defects in the interface dominate the switching. Their density and fluctuation, therefore, will ultimately limit the devi
Deformation twinning in hexagonal crystals is often considered as a way to palliate the lack of independent slip systems. This mechanism might be either exacerbated or shut down in small-scale crystals whose mechanical behavior can significantly devi
We study the effect of external noise on resistive switching. Experimental results on a manganite sample are presented showing that there is an optimal noise amplitude that maximizes the contrast between high and low resistive states. By means of num
Superlattices may play an important role in next generation electronic and spintronic devices if the key-challenge of the reading and writing data can be solved. This challenge emerges from the coupling of low dimensional individual layers with macro
We extend results by Stotland and Di Ventra on the phenomenon of resistive switching aided by noise. We further the analysis of the mechanism underlying the beneficial role of noise and study the EPIR (Electrical Pulse Induced Resistance) ratio depen