ترغب بنشر مسار تعليمي؟ اضغط هنا

Free Expansion of a Weakly-interacting Dipolar Fermi Gas

77   0   0.0 ( 0 )
 نشر من قبل Takushi Nishimura
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We theoretically investigate a polarized dipolar Fermi gas in free expansion. The inter-particle dipolar interaction deforms phase-space distribution in trap and also in the expansion. We exactly predict the minimal quadrupole deformation in the expansion for the high-temperature Maxwell-Boltzmann and zero-temperature Thomas-Fermi gases in the Hartree-Fock and Landau-Vlasov approaches. In conclusion, we provide a proper approach to develop the time-of-flight method for the weakly-interacting dipolar Fermi gas and also reveal a scaling law associated with the Liouvilles theorem in the long-time behaviors of the both gases.

قيم البحث

اقرأ أيضاً

We realize a two-component dipolar Fermi gas with tunable interactions, using erbium atoms. Employing a lattice-protection technique, we selectively prepare deeply degenerate mixtures of the two lowest spin states and perform high-resolution Feshbach spectroscopy in an optical dipole trap. We identify a comparatively broad Feshbach resonance and map the interspin scattering length in its vicinity. The Fermi mixture shows a remarkable collisional stability in the strongly interacting regime, providing a first step towards studies of superfluid pairing, crossing from Cooper pairs to bound molecules, in presence of dipole-dipole interactions.
We have studied the transition from two to three dimensions in a low temperature weakly interacting $^6$Li Fermi gas. Below a critical atom number, $N_{2D}$, only the lowest transverse vibrational state of a highly anisotropic oblate trapping potenti al is occupied and the gas is two-dimensional. Above $N_{2D}$ the Fermi gas enters the quasi-2D regime where shell structure associated with the filling of individual transverse oscillator states is apparent. This dimensional crossover is demonstrated through measurements of the cloud size and aspect ratio versus atom number.
We report on the expansion of a Fermi-Fermi mixture of Li-6 and K-40 atoms under conditions of strong interactions realized near the center of an interspecies Feshbach resonance. We observe two different phenomena of hydrodynamic behavior. The first one is the well-known inversion of the aspect ratio. The second one is a collective expansion, where both species stick together and despite of their different masses expand jointly. Our work constitutes a first step to explore the intriguing many-body physics of this novel system.
We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the post-expansion aspect ratio in terms of temper ature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases, reducing error in expansion thermometry from tens of percent to only a few percent. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.
105 - K. Aikawa , S. Baier , A. Frisch 2014
The deformation of a Fermi surface is a fundamental phenomenon leading to a plethora of exotic quantum phases. Understanding these phases, which play crucial roles in a wealth of systems, is a major challenge in atomic and condensed-matter physics. H ere, we report on the observation of a Fermi surface deformation in a degenerate dipolar Fermi gas of erbium atoms. The deformation is caused by the interplay between strong magnetic dipole-dipole interaction and the Pauli exclusion principle. We demonstrate the many-body nature of the effect and its tunability with the Fermi energy. Our observation provides basis for future studies on anisotropic many-body phenomena in normal and superfluid phases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا