ﻻ يوجد ملخص باللغة العربية
We present photometric and spectroscopic observations of SN 2007if, an overluminous (M_V = -20.4), red (B-V = 0.16 at B-band maximum), slow-rising (t_rise = 24 days) type Ia supernova in a very faint (M_g = -14.10) host galaxy. A spectrum at 5 days past B-band maximum light is a direct match to the super-Chandrasekhar-mass candidate SN Ia 2003fg, showing Si II and C II at ~9000 km/s. A high signal-to-noise co-addition of the SN spectral time series reveals no Na I D absorption, suggesting negligible reddening in the host galaxy, and the late-time color evolution has the same slope as the Lira relation for normal SNe Ia. The ejecta appear to be well mixed, with no strong maximum in I-band and a diversity of iron-peak lines appearing in near-maximum-light spectra. SN2007 if also displays a plateau in the Si II velocity extending as late as +10 days, which we interpret as evidence for an overdense shell in the SN ejecta. We calculate the bolometric light curve of the SN and use it and the ion{Si}{2} velocity evolution to constrain the mass of the shell and the underlying SN ejecta, and demonstrate that SN2007 if is strongly inconsistent with a Chandrasekhar-mass scenario. Within the context of a tamped detonation model appropriate for double-degenerate mergers, and assuming no host extinction, we estimate the total mass of the system to be 2.4 +/- 0.2 solar masses, with 1.6 +/- 0.1 solar masses of nickel-56 and with 0.3-0.5 solar masses in the form of an envelope of unburned carbon/oxygen. Our modeling demonstrates that the kinematics of shell entrainment provide a more efficient mechanism than incomplete nuclear burning for producing the low velocities typical of super-Chandrasekhar-mass SNeIa.
We present a multi-wavelength photometric and spectroscopic analysis of thirteen Super-Chandrasekhar Mass/2003fg-like type Ia Supernova (SNe~Ia). Nine of these objects were observed by the Carnegie Supernova Project. 2003fg-like have slowly declining
We present a sample of normal type Ia supernovae from the Nearby Supernova Factory dataset with spectrophotometry at sufficiently late phases to estimate the ejected mass using the bolometric light curve. We measure $^{56}$Ni masses from the peak bol
Among Type Ia supernovae (SNe~Ia) exist a class of overluminous objects whose ejecta mass is inferred to be larger than the canonical Chandrasekhar mass. We present and discuss the UV/optical photometric light curves, colors, absolute magnitudes, and
In this paper, we present and analyse optical photometry and spectra of the extremely luminous and slowly evolving Type Ia supernova (SN Ia) 2009dc, and offer evidence that it is a super-Chandrasekhar mass (SC) SN Ia and thus had a SC white dwarf (WD
We present adaptive optics imaging of the core collapse supernova (SN) 2009md, which we use together with archival emph{Hubble Space Telescope} data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude o