ﻻ يوجد ملخص باللغة العربية
We present adaptive optics imaging of the core collapse supernova (SN) 2009md, which we use together with archival emph{Hubble Space Telescope} data to identify a coincident progenitor candidate. We find the progenitor to have an absolute magnitude of $V = -4.63^{+0.3}_{-0.4}$ mag and a colour of $V-I = 2.29^{+0.25}_{-0.39}$ mag, corresponding to a progenitor luminosity of log $L$/L$_{odot}$ $sim4.54pm0.19$ dex. Using the stellar evolution code STARS, we find this to be consistent with a red supergiant progenitor with $M = 8.5_{-1.5}^{+6.5}$ M$_{odot}$. The photometric and spectroscopic evolution of SN 2009md is similar to that of the class of sub-luminous Type IIP SNe; in this paper we compare the evolution of SN 2009md primarily to that of the sub-luminous SN 2005cs. We estimate the mass of $^{56}$Ni ejected in the explosion to be $(5.4pm1.3) times 10^{-3}$ M$_{odot}$ from the luminosity on the radioactive tail, which is in agreement with the low $^{56}$Ni masses estimated for other sub-luminous Type IIP SNe. From the lightcurve and spectra, we show the SN explosion had a lower energy and ejecta mass than the normal Type IIP SN 1999em. We discuss problems with stellar evolutionary models, and the discrepancy between low observed progenitor luminosities (log $L$/L$_{odot}$ $sim4.3-5$ dex) and model luminosities after the second-dredge-up for stars in this mass range, and consider an enhanced carbon burning rate as a possible solution. In conclusion, SN 2009md is a faint SN arising from the collapse of a progenitor close to the lower mass limit for core-collapse. This is now the third discovery of a low mass progenitor star producing a low energy explosion and low $^{56}$Ni ejected mass, which indicates that such events arise from the lowest end of the mass range that produces a core-collapse supernova (7-8 M$_{odot}$).
We present a monitoring study of SN 2004A and probable discovery of a progenitor star in pre-explosion HST images. The photometric and spectroscopic monitoring of SN 2004A show that it was a normal Type II-P which was discovered in NGC 6207 about two
We investigate ZTF18aalrxas, a double-peaked Type IIb core-collapse supernova (SN) discovered during science validation of the Zwicky Transient Facility (ZTF). ZTF18aalrxas was discovered while the optical emission was still rising towards the initia
We have identified a progenitor candidate in archival Hubble Space Telescope (HST) images for the Type Ic SN 2017ein in NGC 3938, pinpointing the candidates location via HST Target-of-Opportunity imaging of the SN itself. This would be the first iden
We present an analysis of late-time Hubble Space Telescope Wide Field Camera 3 and Wide Field Planetary Camera 2 observations of the site of the Type Ic SN 2007gr in NGC 1058. The SN is barely recovered in the late-time WFPC2 observations, while a po
We present the first successful simulation of a neutrino-driven supernova explosion in three dimensions (3D), using the Prometheus-Vertex code with an axis-free Yin-Yang grid and a sophisticated treatment of three-flavor, energy-dependent neutrino tr