ترغب بنشر مسار تعليمي؟ اضغط هنا

Carnegie Supernova Project: The First Homogeneous Sample of Super-Chandrasekhar Mass/2003fg-like Type Ia Supernova

101   0   0.0 ( 0 )
 نشر من قبل Chris Ashall
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a multi-wavelength photometric and spectroscopic analysis of thirteen Super-Chandrasekhar Mass/2003fg-like type Ia Supernova (SNe~Ia). Nine of these objects were observed by the Carnegie Supernova Project. 2003fg-like have slowly declining light curves ($Delta m_{15}$(B) $<$1.3 mag), and peak absolute $B$-band magnitudes between $-19<M_{B}<-21$~mag. Many 2003fg-like are located in the same part of the luminosity width relation as normal SNe~Ia. In the optical $B$ and $V$ bands, 2003fg-like look like normal SNe~Ia, but at redder wavelengths they diverge. Unlike other luminous SNe~Ia, 2003fg-like generally have only one $i$-band maximum which peaks after the epoch of $B$-band maximum, while their NIR light curve rise times can be $gtrsim$40 days longer than those of normal SNe~Ia. They are also at least one magnitude brighter in the NIR bands than normal SNe~Ia, peaking above $M_H < -19$~mag, and generally have negative Hubble residuals, which may be the cause of some systematics in dark energy experiments. Spectroscopically, 2003fg-like exhibit peculiarities such as unburnt carbon well past maximum light, a large spread (8000--12000~km/s) in SiII $lambda$6355 velocities at maximum light with no rapid early velocity decline, and no clear $H$-band break at +10~d, e. We find that SNe with a larger pseudo equivalent width of CII at maximum light have lower SiII $lambda$6355 velocities and slower declining light curves. There are also multiple factors that contribute to the peak luminosity of 2003fg-like. The explosion of a C-O degenerate core inside a carbon-rich envelope is consistent with these observations. Such a configuration may come from the core degenerate scenario.



قيم البحث

اقرأ أيضاً

The Type Ia supernova (SN Ia) LSQ14fmg exhibits exaggerated properties which may help to reveal the origin of the super-Chandrasekhar (or 03fg-like) group. The optical spectrum is typical of a 03fg-like SN Ia, but the light curves are unlike those of any SNe Ia observed. The light curves of LSQ14fmg rise extremely slowly. At -23 rest-frame days relative to B-band maximum, LSQ14fmg is already brighter than $M_V$=-19 mag before host extinction correction. The observed color curves show a flat evolution from the earliest observation to approximately one week after maximum. The near-infrared light curves peak brighter than -20.5 mag in the J and H bands, far more luminous than any 03fg-like SNe Ia with near-infrared observations. At one month past maximum, the optical light curves decline rapidly. The early, slow rise and flat color evolution are interpreted to result from an additional excess flux from a power source other than the radioactive decay of the synthesized $^{56}Ni$. The excess flux matches the interaction with a typical superwind of an asymptotic giant branch (AGB) star in density structure, mass-loss rate, and duration. The rapid decline starting at around one month past B-band maximum may be an indication of rapid cooling by active carbon monoxide (CO) formation, which requires a low temperature and high density environment. These peculiarities point to an AGB progenitor near the end of its evolution and the core degenerate scenario as the likely explosion mechanism for LSQ14fmg.
We use the spectroscopy and homogeneous photometry of 97 Type Ia supernovae obtained by the emph{Carnegie Supernova Project} as well as a subset of 36 Type Ia supernovae presented by Zheng et al. (2018) to examine maximum-light correlations in a four -dimensional (4-D) parameter space: $B$-band absolute magnitude, $M_B$, ion{Si}{2}~$lambda6355$ velocity, vsi, and ion{Si}{2} pseudo-equivalent widths pEW(ion{Si}{2}~$lambda6355$) and pEW(ion{Si}{2}~$lambda5972$). It is shown using Gaussian mixture models (GMMs) that the original four groups in the Branch diagram are well-defined and robust in this parameterization. We find three continuous groups that describe the behavior of our sample in [$M_B$, vsi] space. Extending the GMM into the full 4-D space yields a grouping system that only slightly alters group definitions in the [$M_B$, vsi] projection, showing that most of the clustering information in [$M_B$, vsi] is already contained in the 2-D GMM groupings. However, the full 4-D space does divide group membership for faster objects between core-normal and broad-line objects in the Branch diagram. A significant correlation between $M_B$ and pEW(ion{Si}{2}~$lambda5972$) is found, which implies that Branch group membership can be well-constrained by spectroscopic quantities alone. In general, we find that higher-dimensional GMMs reduce the uncertainty of group membership for objects between the originally defined Branch groups. We also find that the broad-line Branch group becomes nearly distinct with the inclusion of vsi, indicating that this subclass of SNe Ia may be somehow different from the other groups.
We present the analysis of the first set of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project. Well-sampled, high-precision optical (ugriBV) and near-infrared (NIR; YJHKs) light curves obtained in a well-understood photometri c system are used to provide light-curve parameters, and ugriBVYJH template light curves. The intrinsic colors at maximum light are calibrated to compute optical--NIR color excesses for the full sample, thus allowing the properties of the reddening law in the host galaxies to be studied. A low value of Rv~1.7, is derived when using the entire sample of SNe. However, when the two highly reddened SNe in the sample are excluded, a value Galactic standard of Rv~3.2 is obtained. The colors of these two events are well matched by a reddening model due to circumstellar dust. The peak luminosities are calibrated using a two-parameter linear fit to the decline rates and the colors, or alternatively, the color excesses. In both cases, dispersions in absolute magnitude of 0.12--0.16 mag are obtained, depending on the filter-color combination. In contrast to the results obtained from color excesses, these fits give Rv~1--2, even when the two highly reddened SNe are excluded. This discrepancy suggests that, beyond the normal interstellar reddening produced in the host galaxies, there is an intrinsic dispersion in the colors of SNe Ia which is correlated with luminosity but independent of the decline rate. Finally, a Hubble diagram is produced by combining the results of the fits for each filter. The resulting scatter of 0.12 mag appears to be limited by peculiar velocities as evidenced by the strong correlation between the distance-modulus residuals among the different filters. The implication is that the actual precision of SN Ia distances is 3--4%.
We present a comprehensive dataset of optical and near-infrared photometry and spectroscopy of type~Ia supernova (SN) 2016hnk, combined with integral field spectroscopy (IFS) of its host galaxy, MCG -01-06-070, and nearby environment. Properties of t he SN local environment are characterized by means of single stellar population synthesis applied to IFS observations taken two years after the SN exploded. SN 2016hnk spectra are compared to other 1991bg-like SNe Ia, 2002es-like SNe Ia, and Ca-rich transients. In addition, abundance stratification modelling is used to identify the various spectral features in the early phase spectral sequence and the dataset is also compared to a modified non-LTE model previously produced for the sublumnious SN 1999by. SN 2016hnk is consistent with being a sub-luminous (M$_{rm B}=-16.7$ mag, s$_{rm BV}$=0.43$pm$0.03), highly reddened object. IFS of its host galaxy reveals both a significant amount of dust at the SN location, as well as residual star formation and a high proportion of old stellar populations in the local environment compared to other locations in the galaxy, which favours an old progenitor for SN 2016hnk. Inspection of a nebular spectrum obtained one year after maximum contains two narrow emission lines attributed to the forbidden [Ca II] $lambdalambda$7291,7324 doublet with a Doppler shift of 700 km s$^{-1}$. Based on various observational diagnostics, we argue that the progenitor of SN 2016hnk was likely a near Chandrasekhar-mass ($M_{rm Ch}$) carbon-oxygen white dwarf that produced 0.108 $M_odot$ of $^{56}$Ni. Our modeling suggests that the narrow [Ca II] features observed in the nebular spectrum are associated with $^{48}$Ca from electron capture during the explosion, which is expected to occur only in white dwarfs that explode near or at the $M_{rm Ch}$ limit.
This is the first release of optical spectroscopic data of low-redshift Type Ia supernovae (SNe Ia) by the Carnegie Supernova Project including 604 previously unpublished spectra of 93 SNe Ia. The observations cover a range of phases from 12 days bef ore to over 150 days after the time of B-band maximum light. With the addition of 228 near-maximum spectra from the literature we study the diversity among SNe Ia in a quantitative manner. For that purpose, spectroscopic parameters are employed such as expansion velocities from spectral line blueshifts, and pseudo-equivalent widths (pW). The values of those parameters at maximum light are obtained for 78 objects, thus providing a characterization of SNe Ia that may help to improve our understanding of the properties of the exploding systems and the thermonuclear flame propagation. Two objects, namely SNe 2005M and 2006is, stand out from the sample by showing peculiar Si II and S II velocities but otherwise standard velocities for the rest of the ions. We further study the correlations between spectroscopic and photometric parameters such as light-curve decline rate and color. In agreement with previous studies, we find that the pW of Si II absorption features are very good indicators of light-curve decline rate. Furthermore, we demonstrate that parameters such as pW2(SiII4130) and pW6(SiII5972) provide precise calibrations of the peak B-band luminosity with dispersions of ~0.15 mag. In the search for a secondary parameter in the calibration of peak luminosity for SNe Ia, we find a ~2--3-sigma correlation between B-band Hubble residuals and the velocity at maximum light of S II and Si II lines.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا