ترغب بنشر مسار تعليمي؟ اضغط هنا

Veech surfaces with non-periodic directions in the trace field

154   0   0.0 ( 0 )
 نشر من قبل Thomas Schmidt
 تاريخ النشر 2009
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that each of Veechs original examples of translation surfaces with ``optimal dynamics whose trace field is of degree greater than two has non-periodic directions of vanishing SAF-invariant. Furthermore, we give explicit examples of pseudo-Anosov diffeomorphisms whose contracting direction has zero SAF-invariant.



قيم البحث

اقرأ أيضاً

88 - J. Beck , W.W.L. Chen , 2021
This paper is motivated by an interesting problem studied more than 50 years ago by Veech and which can be considered a parity, or mod 2, version of the classical equidistribution problem concerning the irrational rotation sequence. The Veech discret e 2-circle problem can also be visualized as a continuous flat dynamical system, in the form of 1-direction geodesic flow on a 2-square-b surface, a surface obtained by modifying the surface comprising two side-by-side squares by the inclusion of barriers and gates on the vertical edges, with appropriate modification of the edge identifications. A famous result of Gutkin and Veech says that 1-direction geodesic flow on any flat finite polysquare translation surface exhibits optimal behavior, in the form of an elegant uniform-periodic dichotomy. However, for irrational values of b, the 2-square-b surface is not a polysquare surface, and Veech and others have highlighted serious violations of the uniform-periodic dichotomy. Here we extend some of the results of Veech to consider cases previously not covered, and also obtain some time-quantitative description of these violations. Furthermore, we establish a far-reaching generalization of some earlier results to the class of flat finite polysquare-b-rational translation surfaces, obtained from flat finite polysquare translation surfaces in a similar way that the 2-square-b surface is constructed.
144 - Max Bauer 2014
An Abelian differential gives rise to a flat structure (translation surface) on the underlying Riemann surface. In some directions the directional flow on the flat surface may contain a periodic region that is made up of maximal cylinders filled by p arallel geodesics of the same length. The growth rate of the number of such regions counted with weights, as a function of the length, is quadratic with a coefficient, called Siegel-Veech constant, that is shared by almost all translation surfaces in the ambient stratum. We evaluate various Siegel-Veech constants associated to the geometry of configurations of periodic cylinders and their area, and study extremal properties of such configurations in a fixed stratum and in all strata of a fixed genus.
For each stratum of the space of translation surfaces, we introduce an infinite translation surface containing in an appropriate manner a copy of every translation surface of the stratum. Given a translation surface $(X, omega)$ in the stratum, a mat rix is in its Veech group $mathrm{SL}(X,omega)$ if and only if an associated affine automorphism of the infinite surface sends each of a finite set, the ``marked {em Voronoi staples}, arising from orientation-paired segments appropriately perpendicular to Voronoi 1-cells, to another pair of orientation-paired ``marked segments. We prove a result of independent interest. For each real $age sqrt{2}$ there is an explicit hyperbolic ball such that for any Fuchsian group trivially stabilizing $i$, the Dirichlet domain centered at $i$ of the group already agrees within the ball with the intersection of the hyperbolic half-planes determined by the group elements whose Frobenius norm is at most $a$. %When $mathrm{SL}(X,omega)$ is a lattice we use this to give a condition guaranteeing that the full group $mathrm{SL}(X,omega)$ has been computed. Together, these results give rise to a new algorithm for computing Veech groups.
We provide a family of isolated tangent to the identity germs $f:(mathbb{C}^3,0) to (mathbb{C}^3,0)$ which possess only degenerate characteristic directions, and for which the lift of $f$ to any modification (with suitable properties) has only degene rate characteristic directions. This is in sharp contrast with the situation in dimension $2$, where any isolated tangent to the identity germ $f$ admits a modification where the lift of $f$ has a non-degenerate characteristic direction. We compare this situation with the resolution of singularities of the infinitesimal generator of $f$, showing that this phenomenon is not related to the non-existence of complex separatrices for vector fields of Gomez-Mont and Luengo. Finally, we describe the set of formal $f$-invariant curves, and the associated parabolic manifolds, using the techniques recently developed by Lopez-Hernanz, Raissy, Ribon, Sanz Sanchez, Vivas.
132 - Bixiang Wang 2014
By the Lyapunov-Perron method,we prove the existence of random inertial manifolds for a class of equations driven simultaneously by non-autonomous deterministic and stochastic forcing. These invariant manifolds contain tempered pullback random attrac tors if such attractors exist. We also prove pathwise periodicity and almost periodicity of inertial manifolds when non-autonomous deterministic forcing is periodic and almost periodic in time, respectively.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا