ترغب بنشر مسار تعليمي؟ اضغط هنا

Geometry of periodic regions on flat surfaces and associated Siegel-Veech constants

144   0   0.0 ( 0 )
 نشر من قبل Elise Goujard
 تاريخ النشر 2014
  مجال البحث
والبحث باللغة English
 تأليف Max Bauer




اسأل ChatGPT حول البحث

An Abelian differential gives rise to a flat structure (translation surface) on the underlying Riemann surface. In some directions the directional flow on the flat surface may contain a periodic region that is made up of maximal cylinders filled by parallel geodesics of the same length. The growth rate of the number of such regions counted with weights, as a function of the length, is quadratic with a coefficient, called Siegel-Veech constant, that is shared by almost all translation surfaces in the ambient stratum. We evaluate various Siegel-Veech constants associated to the geometry of configurations of periodic cylinders and their area, and study extremal properties of such configurations in a fixed stratum and in all strata of a fixed genus.



قيم البحث

اقرأ أيضاً

178 - Elise Goujard 2014
We present an explicit formula relating volumes of strata of meromorphicquadratic differentials with at most simple poles on Riemann surfacesand counting functions of the number of flat cylinders filled by closedgeodesics in associated flat metric wi th singularities. This generalizes the resultof Athreya, Eskin and Zorich in genus 0 to higher genera.
157 - Alex Eskin , Anton Zorich 2015
We state conjectures on the asymptotic behavior of the volumes of moduli spaces of Abelian differentials and their Siegel-Veech constants as genus tends to infinity. We provide certain numerical evidence, describe recent advances and the state of the art towards proving these conjectures.
For each stratum of the space of translation surfaces, we introduce an infinite translation surface containing in an appropriate manner a copy of every translation surface of the stratum. Given a translation surface $(X, omega)$ in the stratum, a mat rix is in its Veech group $mathrm{SL}(X,omega)$ if and only if an associated affine automorphism of the infinite surface sends each of a finite set, the ``marked {em Voronoi staples}, arising from orientation-paired segments appropriately perpendicular to Voronoi 1-cells, to another pair of orientation-paired ``marked segments. We prove a result of independent interest. For each real $age sqrt{2}$ there is an explicit hyperbolic ball such that for any Fuchsian group trivially stabilizing $i$, the Dirichlet domain centered at $i$ of the group already agrees within the ball with the intersection of the hyperbolic half-planes determined by the group elements whose Frobenius norm is at most $a$. %When $mathrm{SL}(X,omega)$ is a lattice we use this to give a condition guaranteeing that the full group $mathrm{SL}(X,omega)$ has been computed. Together, these results give rise to a new algorithm for computing Veech groups.
Quasimodular forms were first studied in the context of counting torus coverings. Here we show that a weighted version of these coverings with Siegel-Veech weights also provides quasimodular forms. We apply this to prove conjectures of Eskin and Zori ch on the large genus limits of Masur-Veech volumes and of Siegel-Veech constants. In Part I we connect the geometric definition of Siegel-Veech constants both with a combinatorial counting problem and with intersection numbers on Hurwitz spaces. We introduce modified Siegel-Veech weights whose generating functions will later be shown to be quasimodular. Parts II and III are devoted to the study of the quasimodularity of the generating functions arising from weighted counting of torus coverings. The starting point is the theorem of Bloch and Okounkov saying that q-brackets of shifted symmetric functions are quasimodular forms. In Part II we give an expression for their growth polynomials in terms of Gaussian integrals and use this to obtain a closed formula for the generating series of cumulants that is the basis for studying large genus asymptotics. In Part III we show that the even hook-length moments of partitions are shifted symmetric polynomials and prove a formula for the q-bracket of the product of such a hook-length moment with an arbitrary shifted symmetric polynomial. This formula proves quasimodularity also for the (-2)-nd hook-length moments by extrapolation, and implies the quasimodularity of the Siegel-Veech weighted counting functions. Finally, in Part IV these results are used to give explicit generating functions for the volumes and Siegel-Veech constants in the case of the principal stratum of abelian differentials. To apply these exact formulas to the Eskin-Zorich conjectures we provide a general framework for computing the asymptotics of rapidly divergent power series.
73 - Ian Frankel 2020
We prove a quantitative version of the non-uniform hyperbolicity of the Teichmuller geodesic flow. Namely, at each point of any Teichmuller flow line, we bound the infinitesimal spectral gap for variations of the Hodge norm along the flow line in ter ms of an easily estimated geometric quantity on the flat surface, which is greater than or equal to the flat systole. As applications, we strengthen results of Trevi~no and Smith regarding unique ergodicity of measured foliations, and give an estimate for the spectral gaps of pseudo-Anosov homeomorphisms based on the location of their axes in the moduli space of quadratic differentials.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا