ﻻ يوجد ملخص باللغة العربية
A set of exact closed-form Bloch-state solutions to the stationary Gross-Pitaevskii equation are obtained for a Bose-Einstein condensate in a one-dimensional periodic array of quantum wells, i.e. a square-well periodic potential. We use these exact solutions to comprehensively study the Bloch band, the compressibility, effective mass and the speed of sound as functions of both the potential depth and interatomic interaction. According to our study, a periodic array of quantum wells is more analytically tractable than the sinusoidal potential and allows an easier experimental realization than the Kronig-Penney potential, therefore providing a useful theoretical model for understanding Bose-Einstein condensates in a periodic potential.
The Lowest Landau Level (LLL) equation emerges as an accurate approximation for a class of dynamical regimes of Bose-Einstein Condensates (BEC) in two-dimensional isotropic harmonic traps in the limit of weak interactions. Building on recent developm
We present a theoretical analysis of dilute gas Bose-Einstein condensates with dipolar atomic interactions under rotation in elliptical traps. Working in the Thomas-Fermi limit, we employ the classical hydrodynamic equations to first derive the rotat
Excited-state quantum phase transitions (ESQPTs) extend the notion of quantum phase transitions beyond the ground state. They are characterized by closing energy gaps amid the spectrum. Identifying order parameters for ESQPTs poses however a major ch
Interference of an array of independent Bose-Einstein condensates, whose experiment has been performed recently, is theoretically studied in detail. Even if the number of the atoms in each gas is kept finite and the phases of the gases are not well d
We discuss the method for the measurement of the gravity acceleration g by means of Bloch oscillations of an accelerated BEC in an optical lattice. This method has a theoretical critical point due to the fact that the period of the Bloch oscillations