ﻻ يوجد ملخص باللغة العربية
The Lowest Landau Level (LLL) equation emerges as an accurate approximation for a class of dynamical regimes of Bose-Einstein Condensates (BEC) in two-dimensional isotropic harmonic traps in the limit of weak interactions. Building on recent developments in the field of spatially confined extended Hamiltonian systems, we find a fully nonlinear solution of this equation representing periodically modulated precession of a single vortex. Motions of this type have been previously seen in numerical simulations and experiments at moderately weak coupling. Our work provides the first controlled analytic prediction for trajectories of a single vortex, suggests new targets for experiments, and opens up the prospect of finding analytic multi-vortex solutions.
The dynamic behavior of vortex pairs in two-component coherently (Rabi) coupled Bose-Einstein condensates is investigated in the presence of harmonic trapping. We discuss the role of the surface tension associated with the domain wall connecting two
We create rapidly rotating Bose-Einstein condensates in the lowest Landau level, by spinning up the condensates to rotation rates $Omega>99%$ of the centrifugal limit for a harmonically trapped gas, while reducing the number of atoms. As a consequenc
We study the two-body momentum correlation signal in a quasi one dimensional Bose-Einstein condensate in the presence of a sonic horizon. We identify the relevant correlation lines in momentum space and compute the intensity of the corresponding sign
We study the dynamics of vortices with arbitrary topological charges in weakly interacting Bose-Einstein condensates using the Adomian Decomposition Method to solve the nonlinear Gross-Pitaevskii equation in polar coordinates. The solutions of the vo
We consider the motion of individual two-dimensional vortices in general radially symmetric potentials in Bose-Einstein condensates. We find that although in the special case of the parabolic trap there is a logarithmic correction in the dependence o