ﻻ يوجد ملخص باللغة العربية
Interference of an array of independent Bose-Einstein condensates, whose experiment has been performed recently, is theoretically studied in detail. Even if the number of the atoms in each gas is kept finite and the phases of the gases are not well defined, interference fringes are observed on each snapshot. The statistics of the snapshot interference patterns, i.e., the average fringe amplitudes and their fluctuations (covariance), are computed analytically, and concise formulas for their asymptotic values for long time of flight are derived. Processes contributing to these quantities are clarified and the relationship with the description on the basis of the symmetry-breaking scenario is revealed.
Understanding the effect of interactions in the phase evolution of expanding atomic Bose Einstein condensates is fundamental to describe the basic phenomenon of matter wave interference. Many theoretical and experimental works tackled this problem, a
An atomic Bose-Einstein condensate (BEC) is often described as a macroscopic object which can be approximated by a coherent state. This, on the surface, would appear to indicate that its behavior should be close to being classical. In this paper, we
We study experimentally the stability of excited, interacting states of bosons in a double-well optical lattice in regimes where the nonlinear interactions are expected to induce swallowtail looped band structure. By carefully preparing different ini
We have observed interference between two Bose-Einstein condensates of weakly bound Feshbach molecules of fermionic $^6$Li atoms. Two condensates are prepared in a double-well trap and, after release from this trap, overlap in expansion. We detect a
One-particle reduced density matrix functional theory would potentially be the ideal approach for describing Bose-Einstein condensates. It namely replaces the macroscopically complex wavefunction by the simple one-particle reduced density matrix, the