ترغب بنشر مسار تعليمي؟ اضغط هنا

On the detection of Lorentzian profiles in a power spectrum: A Bayesian approach using ignorance priors

41   0   0.0 ( 0 )
 نشر من قبل Michael Gruberbauer
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Aims. Deriving accurate frequencies, amplitudes, and mode lifetimes from stochastically driven pulsation is challenging, more so, if one demands that realistic error estimates be given for all model fitting parameters. As has been shown by other authors, the traditional method of fitting Lorentzian profiles to the power spectrum of time-resolved photometric or spectroscopic data via the Maximum Likelihood Estimation (MLE) procedure delivers good approximations for these quantities. We, however, show that a conservative Bayesian approach allows one to treat the detection of modes with minimal assumptions (i.e., about the existence and identity of the modes). Methods. We derive a conservative Bayesian treatment for the probability of Lorentzian profiles being present in a power spectrum and describe an efficient implementation that evaluates the probability density distribution of parameters by using a Markov-Chain Monte Carlo (MCMC) technique. Results. Potentially superior to best-fit procedure like MLE, which only provides formal uncertainties, our method samples and approximates the actual probability distributions for all parameters involved. Moreover, it avoids shortcomings that make the MLE treatment susceptible to the built-in assumptions of a model that is fitted to the data. This is especially relevant when analyzing solar-type pulsation in stars other than the Sun where the observations are of lower quality and can be over-interpreted. As an example, we apply our technique to CoRoT observations of the solar-type pulsator HD 49933.

قيم البحث

اقرأ أيضاً

275 - Vincent Fortuin 2021
While the choice of prior is one of the most critical parts of the Bayesian inference workflow, recent Bayesian deep learning models have often fallen back on vague priors, such as standard Gaussians. In this review, we highlight the importance of pr ior choices for Bayesian deep learning and present an overview of different priors that have been proposed for (deep) Gaussian processes, variational autoencoders, and Bayesian neural networks. We also outline different methods of learning priors for these models from data. We hope to motivate practitioners in Bayesian deep learning to think more carefully about the prior specification for their models and to provide them with some inspiration in this regard.
99 - Ewout van den Berg 2020
We describe an efficient implementation of Bayesian quantum phase estimation in the presence of noise and multiple eigenstates. The main contribution of this work is the dynamic switching between different representations of the phase distributions, namely truncated Fourier series and normal distributions. The Fourier-series representation has the advantage of being exact in many cases, but suffers from increasing complexity with each update of the prior. This necessitates truncation of the series, which eventually causes the distribution to become unstable. We derive bounds on the error in representing normal distributions with a truncated Fourier series, and use these to decide when to switch to the normal-distribution representation. This representation is much simpler, and was proposed in conjunction with rejection filtering for approximate Bayesian updates. We show that, in many cases, the update can be done exactly using analytic expressions, thereby greatly reducing the time complexity of the updates. Finally, when dealing with a superposition of several eigenstates, we need to estimate the relative weights. This can be formulated as a convex optimization problem, which we solve using a gradient-projection algorithm. By updating the weights at exponentially scaled iterations we greatly reduce the computational complexity without affecting the overall accuracy.
We introduce a new method for performing robust Bayesian estimation of the three-dimensional spatial power spectrum at the Epoch of Reionization (EoR), from interferometric observations. The versatility of this technique allows us to present two appr oaches. First, when the observations span only a small number of independent spatial frequencies ($k$-modes) we sample directly from the spherical power spectrum coefficients that describe the EoR signal realisation. Second, when the number of $k$-modes to be included in the model becomes large, we sample from the joint probability density of the spherical power spectrum and the signal coefficients, using Hamiltonian Monte Carlo methods to explore this high dimensional ($sim$ 20000) space efficiently. This approach has been successfully applied to simulated observations that include astrophysically realistic foregrounds in a companion publication (Sims et al. 2016). Here we focus on explaining the methodology in detail, and use simple foreground models to both demonstrate its efficacy, and highlight salient features. In particular, we show that including an arbitrary flat spectrum continuum foreground that is $10^8$ times greater in power than the EoR signal has no detectable impact on our parameter estimates of the EoR power spectrum recovered from the data.
The article addresses the problem of detecting presence and location of a small low emission source inside of an object, when the background noise dominates. This problem arises, for instance, in some homeland security applications. The goal is to re ach the signal-to-noise ratio (SNR) levels on the order of $10^{-3}$. A Bayesian approach to this problem is implemented in 2D. The method allows inference not only about the existence of the source, but also about its location. We derive Bayes factors for model selection and estimation of location based on Markov Chain Monte Carlo (MCMC) simulation. A simulation study shows that with sufficiently high total emission level, our method can effectively locate the source.
We consider sensor transmission power control for state estimation, using a Bayesian inference approach. A sensor node sends its local state estimate to a remote estimator over an unreliable wireless communication channel with random data packet drop s. As related to packet dropout rate, transmission power is chosen by the sensor based on the relative importance of the local state estimate. The proposed power controller is proved to preserve Gaussianity of local estimate innovation, which enables us to obtain a closed-form solution of the expected state estimation error covariance. Comparisons with alternative non data-driven controllers demonstrate performance improvement using our approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا