ﻻ يوجد ملخص باللغة العربية
We describe an efficient implementation of Bayesian quantum phase estimation in the presence of noise and multiple eigenstates. The main contribution of this work is the dynamic switching between different representations of the phase distributions, namely truncated Fourier series and normal distributions. The Fourier-series representation has the advantage of being exact in many cases, but suffers from increasing complexity with each update of the prior. This necessitates truncation of the series, which eventually causes the distribution to become unstable. We derive bounds on the error in representing normal distributions with a truncated Fourier series, and use these to decide when to switch to the normal-distribution representation. This representation is much simpler, and was proposed in conjunction with rejection filtering for approximate Bayesian updates. We show that, in many cases, the update can be done exactly using analytic expressions, thereby greatly reducing the time complexity of the updates. Finally, when dealing with a superposition of several eigenstates, we need to estimate the relative weights. This can be formulated as a convex optimization problem, which we solve using a gradient-projection algorithm. By updating the weights at exponentially scaled iterations we greatly reduce the computational complexity without affecting the overall accuracy.
We present a new Bayesian nonparametric approach to estimating the spectral density of a stationary time series. A nonparametric prior based on a mixture of B-spline distributions is specified and can be regarded as a generalization of the Bernstein
Bayesian estimation approaches, which are capable of combining the information of experimental data from different likelihood functions to achieve high precisions, have been widely used in phase estimation via introducing a controllable auxiliary pha
Bayesian inference is a powerful paradigm for quantum state tomography, treating uncertainty in meaningful and informative ways. Yet the numerical challenges associated with sampling from complex probability distributions hampers Bayesian tomography
Gaussian Process (GP) regression has seen widespread use in robotics due to its generality, simplicity of use, and the utility of Bayesian predictions. The predominant implementation of GP regression is a nonparameteric kernel-based approach, as it e
Bayesian analysis is a framework for parameter estimation that applies even in uncertainty regimes where the commonly used local (frequentist) analysis based on the Cramer-Rao bound is not well defined. In particular, it applies when no initial infor