ترغب بنشر مسار تعليمي؟ اضغط هنا

Dispersion and spin wave tunneling in nano-structured magnetostatic spin waveguides

201   0   0.0 ( 0 )
 نشر من قبل Alexander Kozhanov
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف A. Kozhanov




اسأل ChatGPT حول البحث

Magnetostatic spin wave dispersion and loss are measured in micron scale spin wave-guides in ferromagnetic, metallic CoTaZr. Results are in good agreement with model calculations of spin wave dispersion. The measured attenuation lengths, of the order of 3um, are several of orders of magnitude shorter than that predicted from eddy currents in these thin wires. Spin waves effectively tunnel through air gaps, produced by focused ion beam etching, as large as 1.5 um.



قيم البحث

اقرأ أيضاً

301 - A. Kozhanov 2008
Magnetostatic spin wave dispersion and loss are measured in micron scale spin wave-guides in ferromagnetic, metallic CoTaZr. Results are in good agreement with model calculations of spin wave dispersion and up to three different modes are identified. Attenuation lengths of the order of 3 microns are several of orders of magnitude shorter than that predicted from eddy currents in these thin wires.
286 - Q. Wang , B. Heinz , R. Verba 2018
Spin waves are investigated in Yttrium Iron Garnet (YIG) waveguides with a thickness of 39 nm and widths ranging down to 50 nm, i.e., with aspect ratios thickness over width approaching unity, using Brillouin Light Scattering spectroscopy. The experi mental results are verified by a semi-analytical theory and micromagnetic simulations. A critical width is found, below which the exchange interaction suppresses the dipolar pinning phenomenon. This changes the quantization criterion for the spin-wave eigenmodes and results in a pronounced modification of the spin-wave characteristics. The presented semi-analytical theory allows for the calculation of spin-wave mode profiles and dispersion relations in nano-structures.
The field of magnonics attracts significant attention due to the possibility of utilizing information coded into the spin-wave phase or amplitude to perform computation operations on the nanoscale. Recently, spin waves were investigated in Yttrium Ir on Garnet (YIG) waveguides with widths ranging down to 50 nm and aspect ratios thickness over width approaching unity. A critical width was found, below which the exchange interaction suppresses the dipolar pinning phenomenon and the system becomes unpinned. Here we continue these investigations and analyse the pinning phenomenon and spin-wave dispersions as a function of temperature, thickness and material of choice. Higher order modes, the influence of a finite wavevector along the waveguide and the impact of the pinning phenomenon on the spin-wave lifetime are discussed as well as the influence of a trapezoidal cross section and edge roughness of the waveguides. The presented results are of particular interest for potential applications in magnonic devices and the incipient field of quantum magnonics at cryogenic temperatures.
The dipolar (magnetostatic) interaction dominates the behavior of spin waves in magnetic films in the long-wavelength regime. In an in-plane magnetized film, volume modes exist with a negative group velocity (backward volume magnetostatic spin waves) , in addition to the forward surface-localized mode (Damon-Eshbach). Inside the film of finite thickness $L$, the volume modes have a nontrivial spatial dependence, and their two-dimensional dispersion relations $omega(mathbf{k})$ can be calculated only numerically. We present explicit perturbative expressions for the profiles and frequencies of the volume modes, taking into account an in-plane applied field and uniaxial anisotropy, for the regimes $lVert mathbf{k}L rVert gg 1$ and $lVert mathbf{k}L rVert ll 1$, which together provide a good indication of the behavior of the modes for arbitrary wavevector $mathbf{k}$. Moreover, we derive a very accurate semianalytical expression for the dispersion relation $omega(mathbf{k})$ of the lowest-frequency mode that is straightforward to evaluate using standard numerical routines. Our results are useful to quickly interpret and control the excitation and propagation of spin waves in (opto-)magnetic experiments.
287 - M. C. Wu , A. Aziz , D. Morecroft 2008
Using a three-dimensional focused-ion beam lithography process we have fabricated nanopillar devices which show spin transfer torque switching at zero external magnetic fields. Under a small in-plane external bias field, a field-dependent peak in the differential resistance versus current is observed similar to that reported in asymmetrical nanopillar devices. This is interpreted as evidence for the low-field excitation of spin waves which in our case is attributed to a spin-scattering asymmetry enhanced by the IrMn exchange bias layer coupled to a relatively thin CoFe fixed layer.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا