ﻻ يوجد ملخص باللغة العربية
Using a three-dimensional focused-ion beam lithography process we have fabricated nanopillar devices which show spin transfer torque switching at zero external magnetic fields. Under a small in-plane external bias field, a field-dependent peak in the differential resistance versus current is observed similar to that reported in asymmetrical nanopillar devices. This is interpreted as evidence for the low-field excitation of spin waves which in our case is attributed to a spin-scattering asymmetry enhanced by the IrMn exchange bias layer coupled to a relatively thin CoFe fixed layer.
We report magnetization and magetoresistance measurements in hybrid ferromagnetic metal/semiconductor heterostructures comprised of MnAs/(Ga,Mn)As bilayers. Our measurements show that the (metallic) MnAs and (semiconducting) (Ga,Mn)As layers are exch
Recently it has been predicted that a spin-polarized electrical current perpendicular-to-plane (CPP) directly flowing through a magnetic element can induce magnetization switching through spin-momentum transfer. In this letter, the first observation
First-principles density-functional theory calculations show switching magnetization by 90 degree can be achieved in ultrathin BFO film by applying external electric-field. Up-spin carriers appear to the surface with positive field while down-spin on
We present switching field distributions of spin-transfer assisted magnetization reversal in perpendicularly magnetized Co/Ni multilayer spin-valve nanopillars at room temperature. Switching field measurements of the Co/Ni free layer of spin-valve na
We investigate numerically the transverse versus vortex phase diagram of head-to-head domain walls in Co/Cu/Py spin valve nano-stripes (Py: Permalloy), in which the Co layer is mostly single domain while the Py layer hosts the domain wall. The range