ﻻ يوجد ملخص باللغة العربية
The field of magnonics attracts significant attention due to the possibility of utilizing information coded into the spin-wave phase or amplitude to perform computation operations on the nanoscale. Recently, spin waves were investigated in Yttrium Iron Garnet (YIG) waveguides with widths ranging down to 50 nm and aspect ratios thickness over width approaching unity. A critical width was found, below which the exchange interaction suppresses the dipolar pinning phenomenon and the system becomes unpinned. Here we continue these investigations and analyse the pinning phenomenon and spin-wave dispersions as a function of temperature, thickness and material of choice. Higher order modes, the influence of a finite wavevector along the waveguide and the impact of the pinning phenomenon on the spin-wave lifetime are discussed as well as the influence of a trapezoidal cross section and edge roughness of the waveguides. The presented results are of particular interest for potential applications in magnonic devices and the incipient field of quantum magnonics at cryogenic temperatures.
Spin waves are investigated in Yttrium Iron Garnet (YIG) waveguides with a thickness of 39 nm and widths ranging down to 50 nm, i.e., with aspect ratios thickness over width approaching unity, using Brillouin Light Scattering spectroscopy. The experi
Magnetostatic spin wave dispersion and loss are measured in micron scale spin wave-guides in ferromagnetic, metallic CoTaZr. Results are in good agreement with model calculations of spin wave dispersion. The measured attenuation lengths, of the order
A high reproducibility in the performance of cobalt/copper and permalloy/copper lateral spin valves with transparent contacts is obtained by optimizing the interface quality and the purity of copper. This allows us to study comprehensively the spin i
Spin dynamics is calculated in the ferromagnetic (FM) state of the generalized Kondo lattice model taking into account strong on-site correlations between e_g electrons and antiferromagnetic (AFM) exchange among t_{2g} spins. Our study suggests that
Spin wave scattering in the right angle ferromagnetic cross was measured. Shape anisotropy defined magnetization ground states at zero biasing magnetic fields. Scattering of the spin waves in the center of ferromagnetic cross is strongly dependent on