ترغب بنشر مسار تعليمي؟ اضغط هنا

Nuclear quadrupole resonances in compact vapor cells: the crossover from the NMR to the NQR interaction regimes

41   0   0.0 ( 0 )
 نشر من قبل Elizabeth Donley
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first experimental study that maps the transformation of nuclear quadrupole resonances from the pure nuclear quadrupole regime to the quadrupole-perturbed Zeeman regime. The transformation presents an interesting quantum-mechanical problem, since the quantization axis changes from being aligned along the axis of the electric-field gradient tensor to being aligned along the magnetic field. We achieve large nuclear quadrupole shifts for I = 3/2 131-Xe by using a 1 mm^3 cubic cell with walls of different materials. When the magnetic and quadrupolar interactions are of comparable size, perturbation theory is not suitable for calculating the transition energies. Rather than use perturbation theory, we compare our data to theoretical calculations using a Liouvillian approach and find excellent agreement.

قيم البحث

اقرأ أيضاً

Resonances in the magnetic decoupling curves for the spin relaxation of dense alkali-metal vapors prove that much of the relaxation is due to the spin-axis interaction in triplet dimers. Initial estimates of the spin-axis coupling coefficients for the dimers are 290 MHz for Rb; 2500 MHz for Cs.
We present preliminary results from an experimental study of slow light in anti-relaxation-coated Rb vapor cells, and describe the construction and testing of such cells. The slow ground state decoherence rate allowed by coated cell walls leads to a dual-structured electromagnetically induced transparency (EIT) spectrum with a very narrow (<100 Hz) transparency peak on top of a broad pedestal. Such dual-structure EIT permits optical probe pulses to propagate with greatly reduced group velocity on two time scales. We discuss ongoing efforts to optimize the pulse delay in such coated cell systems.
Lasing and steady state superradiance are two phenomena that may appear at first glance to be distinct. In a laser, phase information is maintained by a macroscopic intracavity light field, and the robustness of this phase is what leads to the cohere nce of the output light. In contrast, the coherence of steady-state superradiant systems derives from the macroscopic collective dipole of a many-atom ensemble. In this paper, we develop a quantum theory that connects smoothly between these two extreme limits. We show that lasing and steady-state superradiance should be thought of as the two extreme limits of a continuous crossover. The properties of systems that lie in the superradiance, lasing, and crossover parameter regions are compared. We find that for a given output intensity a narrower linewidth can be obtained by operating closer to the superradiance side of the crossover. We also find that the collective phase is robust against cavity frequency fluctuations in the superradiant regime and against atomic level fluctuations in the lasing regime.
$P_c$ resonances are studied in the approach of quark model and group theory. It is found that there are totally 17 possible pentaquark states with the quark contents $q^3Q bar Q$ ($q$ are $u$ and $d$ quarks; $Q$ is $c$ quark) in the compact pentaqua rk picture, where the hidden heavy pentaquark states may take the color singlet-singlet ($[111]_{{qqq}}otimes [111]_{{c bar c}}$) and color octet-octet ($[21]_{{qqq}}otimes [21]_{{c bar c}}$) configurations. The partial decay widths of hidden heavy pentaquark states are calculated for all possible decay channels. The results show that the $pJ/psi$ is the dominant decay channel for both the spin $3/2$ and $1/2$ pentaquark states, and indicate that the $P_c(4440)$ may not be a compact pentaquark state while $P_c(4312)$ and $P_c(4457)$ could be the spin-$frac{1}{2}$ and spin-$frac{3}{2}$ pentaquark states, respectively.
We have studied the upper critical field, Bc2, in poly-crystalline MgB2 samples in which disorder was varied in a controlled way to carry selectively p and s bands from clean to dirty limit. We have found that the clean regime survives when p bands a re dirty and s bands are midway between clean and dirty. In this framework we can explain the anomalous behaviour of Al doped samples, in which Bc2 decreases as doping increases.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا