ترغب بنشر مسار تعليمي؟ اضغط هنا

Slow light in paraffin-coated Rb vapor cells

82   0   0.0 ( 0 )
 نشر من قبل Mason Klein
 تاريخ النشر 2006
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present preliminary results from an experimental study of slow light in anti-relaxation-coated Rb vapor cells, and describe the construction and testing of such cells. The slow ground state decoherence rate allowed by coated cell walls leads to a dual-structured electromagnetically induced transparency (EIT) spectrum with a very narrow (<100 Hz) transparency peak on top of a broad pedestal. Such dual-structure EIT permits optical probe pulses to propagate with greatly reduced group velocity on two time scales. We discuss ongoing efforts to optimize the pulse delay in such coated cell systems.

قيم البحث

اقرأ أيضاً

Measurements were made to determine the density of rubidium dimer vapor in paraffin-coated cells. The number density of dimers and atoms in similar paraffin-coated and uncoated cells was measured by optical spectroscopy. Due to the relatively low mel ting point of paraffin, a limited temperature range of 43-80 deg C was explored, with the lower end corresponding to a dimer density of less than 10^7 cm^(-3). With one-minute integration time, a sensitivity to dimer number density of better than 10^6 cm^(-3) was achieved. No significant difference in dimer density was observed between the cells.
Steep dispersion of opposite signs in driven degenerate two-level atomic transitions have been predicted and observed on the D2 line of 87Rb in an optically thin vapor cell. The intensity dependence of the anomalous dispersion has been studied. The m aximum observed value of anomalous dispersion [dn/dnu ~= -6x10^{-11}Hz^{-1}] corresponds to anegative group velocity V_g ~= -c/23000.
We demonstrate the possibility of dynamic imaging of magnetic fields using electromagnetically induced transparency in an atomic gas. As an experimental demonstration we employ an atomic Rb gas confined in a glass cell to image the transverse magneti c field created by a long straight wire. In this arrangement, which clearly reveals the essential effect, the field of view is about 2 x 2 mm^2 and the field detection uncertainty is 0.14 mG per 10 um x 10 um image pixel.
We study quantum intensity correlations produced using four-wave mixing in a room-temperature rubidium vapor cell. An extensive study of the effect of the various parameters allows us to observe very large amounts of non classical correlations.
The Fresnel-Fizeau effect of transverse drag, in which the trajectory of a light beam changes due to transverse motion of the optical medium, is usually extremely small and hard to detect. We observe transverse drag in a moving hot-vapor cell, utiliz ing slow light due to electromagnetically induced transparency (EIT). The drag effect is enhanced by a factor 360,000, corresponding to the ratio between the light speed in vacuum and the group velocity under EIT conditions. We study the contribution of the thermal atomic motion, which is much faster than the mean medium velocity, and identify the regime where its effect on the transverse drag is negligible.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا