ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of superconductivity in the cuprates via a universal percolation process

389   0   0.0 ( 0 )
 نشر من قبل Damjan Pelc
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A pivotal step toward understanding unconventional superconductors would be to decipher how superconductivity emerges from the unusual normal state upon cooling. In the cuprates, traces of superconducting pairing appear above the macroscopic transition temperature $T_c$, yet extensive investigation has led to disparate conclusions. The main difficulty has been the separation of superconducting contributions from complex normal state behaviour. Here we avoid this problem by measuring the nonlinear conductivity, an observable that is zero in the normal state. We uncover for several representative cuprates that the nonlinear conductivity vanishes exponentially above $T_c$, both with temperature and magnetic field, and exhibits temperature-scaling characterized by a nearly universal scale $T_0$. Attempts to model the response with the frequently evoked Ginzburg-Landau theory are unsuccessful. Instead, our findings are captured by a simple percolation model that can also explain other properties of the cuprates. We thus resolve a long-standing conundrum by showing that the emergence of superconductivity in the cuprates is dominated by their inherent inhomogeneity.

قيم البحث

اقرأ أيضاً

The possibility of driving phase transitions in low-density condensates through the loss of phase coherence alone has far-reaching implications for the study of quantum phases of matter. This has inspired the development of tools to control and explo re the collective properties of condensate phases via phase fluctuations. Electrically-gated oxide interfaces, ultracold Fermi atoms, and cuprate superconductors, which are characterized by an intrinsically small phase-stiffness, are paradigmatic examples where these tools are having a dramatic impact. Here we use light pulses shorter than the internal thermalization time to drive and probe the phase fragility of the Bi$_2$Sr$_2$CaCu$_2$O$_{8+delta}$ cuprate superconductor, completely melting the superconducting condensate without affecting the pairing strength. The resulting ultrafast dynamics of phase fluctuations and charge excitations are captured and disentangled by time-resolved photoemission spectroscopy. This work demonstrates the dominant role of phase coherence in the superconductor-to-normal state phase transition and offers a benchmark for non-equilibrium spectroscopic investigations of the cuprate phase diagram.
108 - G. Yu , D.-D. Xia , D. Pelc 2017
The nature of the superconducting (SC) precursor in the cuprates has been the subject of intense interest, with profound implications for both the normal and the SC states. Different experimental probes have led to vastly disparate conclusions on the temperature range of superconducting fluctuations. The main challenges have been to separate the SC response from complex normal-state behavior, and to distinguish the underlying behavior of the quintessential CuO$_{2}$ layers from compound-specific properties. Here we reveal remarkably simple and universal behavior of the SC precursor using torque magnetometry, a unique thermodynamic probe with extremely high sensitivity to SC diamagnetism. We comprehensively study four distinct cuprate compounds: single-CuO$_{2}$-layer La$_{2-x}$Sr$_{x}$CuO$_{4}$ (LSCO), Bi$_{2}$(Sr,La)$_{2}$CuO$_{6+delta}$ (Bi2201) and HgBa$_{2}$CuO$_{4+delta}$ (Hg1201), and double-layer Bi$_{2}$Sr$_{2}$Ca$_{0.95}$Y$_{0.05}$CuO$_{8+delta}$ (Bi2212). Our approach, which focuses on the nonlinear diamagnetic response, completely removes normal-state contributions and thus allows us to trace the diamagnetic signal above Tc with great precision. We find that SC diamagnetism vanishes in an unusual, yet surprisingly simple exponential manner, marked by a universal temperature scale that is independent of compound and Tc. We discuss the distinct possibility that this unusual behavior signifies the proliferation of SC clusters as a result of the intrinsic inhomogeneity known to be an inherent property of the cuprates.
The phenomenological Greens function developed in the works of Yang, Rice and Zhang has been very successful in understanding many of the anomalous superconducting properties of the deeply underdoped cuprates. It is based on considerations of the res onating valence bond spin liquid approximation and is designed to describe the underdoped regime of the cuprates. Here we emphasize the region of doping, $x$, just below the quantum critical point at which the pseudogap develops. In addition to Luttinger hole pockets centered around the nodal direction, there are electron pockets near the antinodes which are connected to the hole pockets by gapped bridging contours. We determine the contours of nearest approach as would be measured in angular resolved photoemission experiments and emphasize signatures of the Fermi surface reconstruction from the large Fermi contour of Fermi liquid theory (which contains $1+x$ hole states) to the Luttinger pocket (which contains $x$ hole states). We find that the quasiparticle effective mass renormalization increases strongly towards the edge of the Luttinger pockets beyond which it diverges.
Using a dynamical cluster quantum Monte Carlo approximation, we investigate the effect of local disorder on the stability of d-wave superconductivity including the effect of electronic correlations in both particle-particle and particle-hole channels . With increasing impurity potential, we find an initial rise of the critical temperature due to an enhancement of anti-ferromagnetic spin correlations, followed by a decrease of Tc due to scattering from impurity-induced moments and ordinary pairbreaking. We discuss the weak initial dependence of Tc on impurity concentration found in comparison to experiments on cuprates.
The formation of domains comprising alternating hole rich and hole poor ladders recently observed by Scanning Tunneling Microscopy by Kohsaka et al., on lightly hole doped cuprates, is interpreted in terms of an attractive mechanism which favors the presence of doped holes on Cu sites located each on one side of an oxygen atom. This mechanism leads to a geometrical pattern of alternating hole-rich and hole-poor ladders with a periodicity equal to 4 times the lattice spacing in the CuO plane, as observed experimentally. To cite this article: G. Deutscher, P.-G. de Gennes, C. R. Physique 8 (2007).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا