ﻻ يوجد ملخص باللغة العربية
A brief review of various methods to calculate radiative accelerations for stellar evolution and an analysis of their limitations are followed by applications to Pop I and Pop II stars. Recent applications to Horizontal Branch (HB) star evolution are also described. It is shown that models including atomic diffusion satisfy Schwarzschilds criterion on the interior side of the core boundary on the HB without the introduction of overshooting. Using stellar evolution models starting on the Main Sequence and calculated throughout evolution with atomic diffusion, radiative accelerations are shown to lead to abundance anomalies similar to those observed on the HB of M15.
Atomic diffusion has been recognized as an important process that has to be considered in any computations of stellar models. In solar-type and cooler stars, this process is dominated by gravitational settling, which is now included in most stellar e
The single-valued parameter (SVP) method is a parametric method that offers the possibility of computing radiative accelerations in stellar interiors much faster than other methods. It has been implemented in a few stellar evolution numerical codes f
Chemical element transport processes are among the crucial physical processes needed for precise stellar modelling. Atomic diffusion by gravitational settling nowadays is usually taken into account, and is essential for helioseismic studies. On the o
When modelling stars with masses larger than 1.2Msun with no observed chemical peculiarity, atomic diffusion is often neglected because, on its own, it causes unrealistic surface abundances compared with those observed. The reality is that atomic dif
Here, we compare radiative accelerations (g_rad) derived from the new Opacity Project (OP) data with those computed from OPAL and some previous data from OP. For the case where we have full data from OPAL, the differences in the Rosseland mean opacit