ترغب بنشر مسار تعليمي؟ اضغط هنا

The new Toulouse-Geneva Stellar Evolution Code including radiative accelerations of heavy elements

130   0   0.0 ( 0 )
 نشر من قبل Sylvie Vauclair
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Atomic diffusion has been recognized as an important process that has to be considered in any computations of stellar models. In solar-type and cooler stars, this process is dominated by gravitational settling, which is now included in most stellar evolution codes. In hotter stars, radiative accelerations compete with gravity and become the dominant ingredient in the diffusion flux for most heavy elements. Introducing radiative accelerations into the computations of stellar models modifies the internal element distribution and may have major consequences on the stellar structure. Coupling these processes with hydrodynamical stellar motions has important consequences that need to be investigated in detail. We aim to include the computations of radiative accelerations in a stellar evolution code (here the TGEC code) using a simplified method (SVP) so that it may be coupled with sophisticated macroscopic motions. We also compare the results with those of the Montreal code in specific cases for validation and study the consequences of these coupled processes on accurate models of A- and early-type stars. We implemented radiative accelerations computations into the Toulouse-Geneva stellar evolution code following the semi-analytical prescription proposed by Alecian and LeBlanc. This allows more rapid computations than the full description used in the Montreal code. We present results for A-type stellar models computed with this updated version of TGEC and compare them with similar published models obtained with the Montreal evolution code. We discuss the consequences for the coupling with macroscopic motions, including thermohaline convection.



قيم البحث

اقرأ أيضاً

86 - G. Michaud , J. Richer 2008
A brief review of various methods to calculate radiative accelerations for stellar evolution and an analysis of their limitations are followed by applications to Pop I and Pop II stars. Recent applications to Horizontal Branch (HB) star evolution are also described. It is shown that models including atomic diffusion satisfy Schwarzschilds criterion on the interior side of the core boundary on the HB without the introduction of overshooting. Using stellar evolution models starting on the Main Sequence and calculated throughout evolution with atomic diffusion, radiative accelerations are shown to lead to abundance anomalies similar to those observed on the HB of M15.
When modelling stars with masses larger than 1.2Msun with no observed chemical peculiarity, atomic diffusion is often neglected because, on its own, it causes unrealistic surface abundances compared with those observed. The reality is that atomic dif fusion is in competition with other transport processes. The purpose of this study is to quantify the opposite or conjugated effects of atomic diffusion and rotationally induced mixing in stellar models of low mass stars. Our second goal is to estimate the impact of neglecting both rotational mixing and atomic diffusion in stellar parameter inferences for stars with masses larger than 1.3Msun. Using the AIMS code, we infer the masses and ages of a set of representative artificial stars for which models were computed with the CESTAM evolution code, taking into account rotationally induced mixing and atomic diffusion, including radiative accelerations. We show that for masses lower than 1.3Msun, rotation dominates the transport of chemical elements, and strongly reduces the effect of atomic diffusion, with net surface abundance modifications similar to solar ones. At larger mass, atomic diffusion and rotation are competing equally. Above 1.44Msun, atomic diffusion dominates in stellar models with initial rotation smaller than 80km.s-1 producing a chemical peculiarity which is not observed in Kepler-legacy stars. This indicates that a transport process of chemical elements is missing. Importantly, neglecting rotation and atomic diffusion (including radiative accelerations) in the models, when inferring the parameters of F-type stars, may lead to errors of 5%, 2.5% and 25% respectively for stellar masses, radii and ages. Atomic diffusion (including radiative accelerations) and rotational mixing should be taken into account in stellar models in order to determine accurate stellar parameters.
57 - G. Alecian , F. LeBlanc 2020
The single-valued parameter (SVP) method is a parametric method that offers the possibility of computing radiative accelerations in stellar interiors much faster than other methods. It has been implemented in a few stellar evolution numerical codes f or about a decade. In the present paper, we describe improvements we have recently brought in the process of preparing, from atomic/opacity databases, the SVP tables that are needed to use the method, and their extension to a larger stellar mass domain (from 1 to 10 solar mass) on the main-sequence. We discuss the validity domain of the method. We also present the website from where new tables and codes can be freely accessed and implemented in stellar evolution codes.
We present the updated version of the code used to compute stellar evolutionary tracks in Padova. It is the result of a thorough revision of the major input physics, together with the inclusion of the pre-main sequence phase, not present in our previ ous releases of stellar models. Another innovative aspect is the possibility of promptly generating accurate opacity tables fully consistent with any selected initial chemical composition, by coupling the OPAL opacity data at high temperatures to the molecular opacities computed with our AESOPUS code (Marigo & Aringer 2009). In this work we present extended sets of stellar evolutionary models for various initial chemical compositions, while other sets with different metallicities and/or different distributions of heavy elements are being computed. For the present release of models we adopt the solar distribution of heavy elements from the recent revision by Caffau et al. (2011), corresponding to a Suns metallicity Z=0.0152. From all computed sets of stellar tracks, we also derive isochrones in several photometric systems. The aim is to provide the community with the basic tools to model star clusters and galaxies by means of population synthesis techniques.
We present an example of an interpolation code of the SAHA-S equation of state that has been adapted for use in the stellar evolution code CESAM2k. The aim is to provide the necessary data and numerical procedures for its implementation in a stellar code. A technical problem is the discrepancy between the sets of thermodynamic quantities provided by the SAHA-S equation of state and those necessary in the CESAM2k computations. Moreover, the independent variables in a practical equation of state (like SAHA-S) are temperature and density, whereas for modelling calculations the variables temperature and pressure are preferable. Specifically for the CESAM2k code, some additional quantities and their derivatives must be provided. To provide the bridge between the equation of state and stellar modelling, we prepare auxiliary tables of the quantities that are demanded in CESAM2k. Then we use cubic spline interpolation to provide both smoothness and a good approximation of the necessary derivatives. Using the B-form of spline representation provides us with an efficient algorithm for three-dimensional interpolation. The table of B-spline coefficients provided can be directly used during stellar model calculations together with the module of cubic spline interpolation. This implementation of the SAHA-S equation of state in the CESAM2k stellar structure and evolution code has been tested on a solar model evolved to the present. A comparison with other equations of state is briefly discussed. The choice of a regular net of mesh points for specific primary quantities in the SAHA-S equation of state, together with accurate and consistently smooth tabulated values, provides an effective algorithm of interpolation in modelling calculations. The proposed module of interpolation procedures can be easily adopted in other evolution codes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا