ﻻ يوجد ملخص باللغة العربية
The single-valued parameter (SVP) method is a parametric method that offers the possibility of computing radiative accelerations in stellar interiors much faster than other methods. It has been implemented in a few stellar evolution numerical codes for about a decade. In the present paper, we describe improvements we have recently brought in the process of preparing, from atomic/opacity databases, the SVP tables that are needed to use the method, and their extension to a larger stellar mass domain (from 1 to 10 solar mass) on the main-sequence. We discuss the validity domain of the method. We also present the website from where new tables and codes can be freely accessed and implemented in stellar evolution codes.
A brief review of various methods to calculate radiative accelerations for stellar evolution and an analysis of their limitations are followed by applications to Pop I and Pop II stars. Recent applications to Horizontal Branch (HB) star evolution are
Atomic diffusion has been recognized as an important process that has to be considered in any computations of stellar models. In solar-type and cooler stars, this process is dominated by gravitational settling, which is now included in most stellar e
We study the effects of rotation on the growth and saturation of the double-diffusive fingering (thermohaline) instability at low Prandtl number. Using direct numerical simulations, we estimate the compositional transport rates as a function of the r
Chemical element transport processes are among the crucial physical processes needed for precise stellar modelling. Atomic diffusion by gravitational settling nowadays is usually taken into account, and is essential for helioseismic studies. On the o
Context: There is a wide discrepancy in current estimates of the strength of convection flows in the solar interior obtained using different helioseismic methods applied to observations from SDO/HMI. The cause for these disparities is not known. Aims