ترغب بنشر مسار تعليمي؟ اضغط هنا

Correlated spectral variability in brown dwarfs

204   0   0.0 ( 0 )
 نشر من قبل Coryn Bailer-Jones
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Models of brown dwarf atmospheres suggest they exhibit complex physical behaviour. Observations have shown that they are indeed dynamic, displaying small photometric variations over timescales of hours. Here I report results of infrared (0.95-1.64 micron) spectrophotometric monitoring of four field L and T dwarfs spanning timescales of 0.1-5.5 hrs, the goal being to learn more about the physical nature of this variability. Spectra are analysed differentially with respect to a simultaneously observed reference source in order to remove Earth-atmospheric variations. The variability amplitude detected is typically 2-10%, depending on the source and wavelength. I analyse the data for correlated variations between spectral indices. This approach is more robust than single band or chisq analyses, because it does not assume an amplitude for the (often uncertain) noise level (although the significance test still assumes a shape for the noise power spectrum). Three of the four targets show significant evidence for correlated variability. Some of this can be associated with specific features including Fe, FeH, VO and KI, and there is good evidence for intrinsic variability in water and possibly also methan. Yet some of this variability covers a broader spectral range which would be consistent with dust opacity variations. The underlying common cause is plausibly localized temperature or composition fluctuations caused by convection. Looking at the high signal-to-noise ratio stacked spectra we see many previously identified spectral features of L and T dwarfs, such as KI, NaI, FeH, water and methane. In particular we may have detected methane absorption at 1.3-1.4 micron in the L5 dwarf SDSS 0539-0059.



قيم البحث

اقرأ أيضاً

310 - L. Prato , G. N. Mace , E. L. Rice 2015
We present paper six of the NIRSPEC Brown Dwarf Spectroscopic Survey, an analysis of multi-epoch, high-resolution (R~20,000) spectra of 25 field dwarf systems (3 late-type M dwarfs, 16 L dwarfs, and 6 T dwarfs) taken with the NIRSPEC infrared spectro graph at the W. M. Keck Observatory. With a radial velocity precision of ~2 km/s, we are sensitive to brown dwarf companions in orbits with periods of a few years or less given a mass ratio of 0.5 or greater. We do not detect any spectroscopic binary brown dwarfs in the sample. Given our target properties, and the frequency and cadence of observations, we use a Monte Carlo simulation to determine the detection probability of our sample. Even with a null detection result, our 1 sigma upper limit for very low mass binary frequency is 18%. Our targets included 7 known, wide brown dwarf binary systems. No significant radial velocity variability was measured in our multi-epoch observations of these systems, even for those pairs for which our data spanned a significant fraction of the orbital period. Specialized techniques are required to reach the high precisions sensitive to motion in orbits of very low-mass systems. For eight objects, including six T dwarfs, we present the first published high-resolution spectra, many with high signal to noise, that will provide valuable comparison data for models of brown dwarf atmospheres.
L dwarfs exhibit low-level, rotationally-modulated photometric variability generally associated with heterogeneous, cloud-covered atmospheres. The spectral character of these variations yields insight into the particle sizes and vertical structure of the clouds. Here we present the results of a high precision, ground-based, near-infrared, spectral monitoring study of two mid-type L dwarfs that have variability reported in the literature, 2MASS J08354256-0819237 and 2MASS J18212815+1414010, using the SpeX instrument on the Infrared Telescope Facility. By simultaneously observing a nearby reference star, we achieve <0.15% per-band sensitivity in relative brightness changes across the 0.9--2.4um bandwidth. We find that 2MASS J0835-0819 exhibits marginal (< ~0.5% per band) variability with no clear spectral dependence, while 2MASS J1821+1414 varies by up to +/-1.5% at 0.9 um, with the variability amplitude declining toward longer wavelengths. The latter result extends the variability trend observed in prior HST/WFC3 spectral monitoring of 2MASS J1821+1414, and we show that the full 0.9-2.4 um variability amplitude spectrum can be reproduced by Mie extinction from dust particles with a log-normal particle size distribution with a median radius of 0.24 um. We do not detect statistically significant phase variations with wavelength. The different variability behavior of 2MASS J0835-0819 and 2MASS J1821+1414 suggests dependencies on viewing angle and/or overall cloud content, underlying factors that can be examined through a broader survey.
We have carried out multi-epoch, time-series differential I-band photometry of a large sample of objects in the south-east region of the young (~3 Myr), nearby (~350 pc) sigma Orionis open cluster. A field of ~1000 arcmin^2 was monitored during four nights over a period of two years. Using this dataset, we have studied the photometric variability of twenty-eight brown dwarf cluster candidates with masses ranging from the stellar-substellar boundary down to the planetary-mass domain. We have found that about 50% of the sample show photometric variability on timescales from less than one hour to several days and years. The amplitudes of the I-band light curves range from less than 0.01 up to ~0.4 magnitudes. A correlation between the near-infrared excess in the K_s band, strong Halpha emission and large-amplitude photometric variation is observed. We briefly discuss how these results may fit the different scenarios proposed to explain the variability of cool and ultracool dwarfs (i.e. magnetic spots, patchy obscuration by dust clouds, surrounding accretion discs and binarity). Additionally, we have determined tentative rotational periods in the range 3 to 40 h for three objects with masses around 60 M_Jup, and the rotational velocity of 14+/-4 km/s for one of them.
We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rot ation-modulated flux variations between 1.1 $mu$m and 1.7 $mu$m. We find that the water absorption bands of the two L5 dwarfs at 1.15 $mu$m and 1.4 $mu$m vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 $mu$m displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.
This chapter reviews our current knowledge of metal-poor ultracool dwarfs with spectral types later than M7. The current census of M, L, and T subdwarfs is explored. The main colour trends of subdwarfs from the optical to the mid-infrared are describ ed and their spectral features presented, which led to a preliminary and tentative spectral classification subject to important changes in the future when more of these metal-poor objects are discovered. Their multiplicity and the determination of their physical parameters (effective temperature, gravity, metallicity, and mass) are discussed. Finally, some suggestions and future guidelines are proposed to foster our knowledge on the oldest and coolest members of our Galaxy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا