ترغب بنشر مسار تعليمي؟ اضغط هنا

HST Rotational Spectral Mapping of Two L-Type Brown Dwarfs: Variability In and Out of Water Bands Indicates High-Altitude Haze Layers

69   0   0.0 ( 0 )
 نشر من قبل Hao Yang
 تاريخ النشر 2014
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present time-resolved near-infrared spectroscopy of two L5 dwarfs, 2MASS J18212815+1414010 and 2MASS J15074759-1627386, observed with the Wide Field Camera 3 instrument on the Hubble Space Telescope (HST). We study the wavelength dependence of rotation-modulated flux variations between 1.1 $mu$m and 1.7 $mu$m. We find that the water absorption bands of the two L5 dwarfs at 1.15 $mu$m and 1.4 $mu$m vary at similar amplitudes as the adjacent continuum. This differs from the results of previous HST observations of L/T transition dwarfs, in which the water absorption at 1.4 $mu$m displays variations of about half of the amplitude at other wavelengths. We find that the relative amplitude of flux variability out of the water band with respect to that in the water band shows a increasing trend from the L5 dwarfs toward the early T dwarfs. We utilize the models of Saumon & Marley (2008) and find that the observed variability of the L5 dwarfs can be explained by the presence of spatially varying high-altitude haze layers above the condensate clouds. Therefore, our observations show that the heterogeneity of haze layers - the driver of the variability - must be located at very low pressures, where even the water opacity is negligible. In the near future, the rotational spectral mapping technique could be utilized for other atomic and molecular species to probe different pressure levels in the atmospheres of brown dwarfs and exoplanets and uncover both horizontal and vertical cloud structures.

قيم البحث

اقرأ أيضاً

Most directly imaged giant exoplanets are fainter than brown dwarfs with similar spectra. To explain their relative underluminosity unusually cloudy atmospheres have been proposed. However, with multiple parameters varying between any two objects, it remained difficult to observationally test this idea. We present a new method, sensitive time-resolved Hubble Space Telescope near-infrared spectroscopy, to study two rotating L/T transition brown dwarfs (2M2139 and SIMP0136). The observations provide spatially and spectrally resolved mapping of the cloud decks of the brown dwarfs. The data allow the study of cloud structure variations while other parameters are unchanged. We find that both brown dwarfs display variations of identical nature: J- and H-band brightness variations with minimal color and spectral changes. Our light curve models show that even the simplest surface brightness distributions require at least three elliptical spots. We show that for each source the spectral changes can be reproduced with a linear combination of only two different spectra, i.e. the entire surface is covered by two distinct types of regions. Modeling the color changes and spectral variations together reveal patchy cloud covers consisting of a spatially heterogenous mix of low-brightness, low-temperature thick clouds and brighter, thin and warm clouds. We show that the same thick cloud patches seen in our varying brown dwarf targets, if extended to the entire photosphere, predict near-infrared colors/magnitudes matching the range occupied by the directly imaged exoplanets that are cooler and less luminous than brown dwarfs with similar spectral types. This supports the models in which thick clouds are responsible for the near infrared properties of these underluminous exoplanets.
The rotational spectral modulation (spectro-photometric variability) of brown dwarfs is usually interpreted as a sign of the presence of inhomogeneous cloud covers in the atmosphere. This paper aims at exploring the role of temperature fluctuations i n these spectral modulations. These fluctuations could naturally arise in a convective atmosphere impacted by diabatic processes such as complex chemistry, i.e. the recently proposed mechanism to explain the L/T transition: CO/CH4 radiative convection. We use the 1D radiative/convective code ATMO with ad-hoc modifications of the temperature gradient to model the rotational spectral modulation of 2MASS 1821, 2MASS 0136, and PSO 318.5-22. Modeling the spectral bright-to-faint ratio of the modulation of 2MASS 1821, 2MASS 0136, and PSO 318.5-22 shows that most spectral characteristics can be reproduced by temperature variations alone. Furthermore, the approximately anti-correlated variability between different wavelengths can be easily interpreted as a change in the temperature gradient in the atmosphere which is the consequence we expect from CO/CH4 radiative convection to explain the L/T transition. The deviation from an exact anti-correlation could then be interpreted as a phase shift similar to the hot-spot shift a different bandpasses in the atmosphere of hot Jupiters. Our results suggest that the rotational spectral modulation from cloud-opacity and temperature variations are degenerate. The detection of direct cloud spectral signatures, e.g. the silicate absorption feature at 10 um, would help to confirm the presence of clouds and their contribution to spectral modulations. Future studies looking at the differences in the spectral modulation of objects with and without the silicate absorption feature may give us some insight on how to distinguish cloud-opacity fluctuations from temperature fluctuations.
High resolution spectroscopy (R > 20,000) is currently the only known method to constrain the orbital solution and atmospheric properties of non-transiting hot Jupiters. It does so by resolving the spectral features of the planet into a forest of spe ctral lines and directly observing its Doppler shift while orbiting the host star. In this study, we analyse VLT/CRIRES (R = 100,000) L-band observations of the non-transiting giant planet HD 179949 b centred around 3.5 microns. We observe a weak (3.0 sigma, or S/N = 4.8) spectral signature of H2O in absorption contained within the radial velocity of the planet at superior-conjunction, with a mild dependence on the choice of line list used for the modelling. Combining this data with previous observations in the K-band, we measure a detection significance of 8.4 sigma for an atmosphere that is most consistent with a shallow lapse-rate, solar C/O ratio, and with CO and H2O being the only major sources of opacity in this wavelength range. As the two sets of data were taken three years apart, this points to the absence of strong radial-velocity anomalies due, e.g., to variability in atmospheric circulation. We measure a projected orbital velocity for the planet of KP = (145.2 +- 2.0)kms^{-1} (1 sigma) and improve the error bars on this parameter by ~70%. However, we only marginally tighten constraints on orbital inclination (66.2 +3.7 -3.1 degrees) and planet mass (0.963 +0.036 -0.031 Jupiter masses), due to the dominant uncertainties of stellar mass and semi-major axis. Follow ups of radial-velocity planets are thus crucial to fully enable their accurate characterisation via high resolution spectroscopy.
Models of brown dwarf atmospheres suggest they exhibit complex physical behaviour. Observations have shown that they are indeed dynamic, displaying small photometric variations over timescales of hours. Here I report results of infrared (0.95-1.64 mi cron) spectrophotometric monitoring of four field L and T dwarfs spanning timescales of 0.1-5.5 hrs, the goal being to learn more about the physical nature of this variability. Spectra are analysed differentially with respect to a simultaneously observed reference source in order to remove Earth-atmospheric variations. The variability amplitude detected is typically 2-10%, depending on the source and wavelength. I analyse the data for correlated variations between spectral indices. This approach is more robust than single band or chisq analyses, because it does not assume an amplitude for the (often uncertain) noise level (although the significance test still assumes a shape for the noise power spectrum). Three of the four targets show significant evidence for correlated variability. Some of this can be associated with specific features including Fe, FeH, VO and KI, and there is good evidence for intrinsic variability in water and possibly also methan. Yet some of this variability covers a broader spectral range which would be consistent with dust opacity variations. The underlying common cause is plausibly localized temperature or composition fluctuations caused by convection. Looking at the high signal-to-noise ratio stacked spectra we see many previously identified spectral features of L and T dwarfs, such as KI, NaI, FeH, water and methane. In particular we may have detected methane absorption at 1.3-1.4 micron in the L5 dwarf SDSS 0539-0059.
L dwarfs exhibit low-level, rotationally-modulated photometric variability generally associated with heterogeneous, cloud-covered atmospheres. The spectral character of these variations yields insight into the particle sizes and vertical structure of the clouds. Here we present the results of a high precision, ground-based, near-infrared, spectral monitoring study of two mid-type L dwarfs that have variability reported in the literature, 2MASS J08354256-0819237 and 2MASS J18212815+1414010, using the SpeX instrument on the Infrared Telescope Facility. By simultaneously observing a nearby reference star, we achieve <0.15% per-band sensitivity in relative brightness changes across the 0.9--2.4um bandwidth. We find that 2MASS J0835-0819 exhibits marginal (< ~0.5% per band) variability with no clear spectral dependence, while 2MASS J1821+1414 varies by up to +/-1.5% at 0.9 um, with the variability amplitude declining toward longer wavelengths. The latter result extends the variability trend observed in prior HST/WFC3 spectral monitoring of 2MASS J1821+1414, and we show that the full 0.9-2.4 um variability amplitude spectrum can be reproduced by Mie extinction from dust particles with a log-normal particle size distribution with a median radius of 0.24 um. We do not detect statistically significant phase variations with wavelength. The different variability behavior of 2MASS J0835-0819 and 2MASS J1821+1414 suggests dependencies on viewing angle and/or overall cloud content, underlying factors that can be examined through a broader survey.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا