ترغب بنشر مسار تعليمي؟ اضغط هنا

Hunting Galaxies to (and for) Extinction

44   0   0.0 ( 0 )
 نشر من قبل Jonathan Foster
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In studies of star-forming regions, near-infrared excess (NIRX) sources--objects with intrinsic colors redder than normal stars--constitute both signal (young stars) and noise (e.g. background galaxies). We hunt down (identify) galaxies using near-infrared observations in the Perseus star-forming region by combining structural information, colors, and number density estimates. Galaxies at moderate redshifts (z = 0.1 - 0.5) have colors similar to young stellar objects (YSOs) at both near- and mid-infrared (e.g. Spitzer) wavelengths, which limits our ability to identify YSOs from colors alone. Structural information from high-quality near-infrared observations allows us to better separate YSOs from galaxies, rejecting 2/5 of the YSO candidates identified from Spitzer observations of our regions and potentially extending the YSO luminosity function below K of 15 magnitudes where galaxy contamination dominates. Once they are identified we use galaxies as valuable extra signal for making extinction maps of molecular clouds. Our new iterative procedure: the Galaxies Near Infrared Color Excess method Revisited (GNICER), uses the mean colors of galaxies as a function of magnitude to include them in extinction maps in an unbiased way. GNICER increases the number of background sources used to probe the structure of a cloud, decreasing the noise and increasing the resolution of extinction maps made far from the galactic plane.

قيم البحث

اقرأ أيضاً

55 - I. Garcia-Ruiz 2002
We present 21-cm HI line and optical R-band observations for a sample of 26 edge-on galaxies. The HI observations were obtained with the Westerbork Synthesis Radio Telescope, and are part of the WHISP database (Westerbork HI Survey of Spiral and Irre gular Galaxies). We present HI maps, optical images, and radial HI density profiles. We have also derived the rotation curves and studied the warping and lopsidedness of the HI disks. 20 out of the 26 galaxies of our sample are warped, confirming that warping of the HI disks is a very common phenomenon in disk galaxies. Indeed, we find that all galaxies that have an extended HI disk with respect to the optical are warped. The warping usually starts around the edge of the optical disk. The degree of warping varies considerably from galaxy to galaxy. Furthermore, many warps are asymmetric, as they show up in only one side of the disk or exhibit large differences in amplitude in the approaching and receding sides of the galaxy. These asymmetries are more pronounced in rich environments, which may indicate that tidal interactions are a source of warp asymmetry. A rich environment tends to produce larger warps as well. The presence of lopsidedness seems to be related to the presence of nearby companions.
We present a study of the dust-to-gas ratios in five nearby galaxies NGC 628 (M74), NGC 6503, NGC 7793, UGC 5139 (Holmberg I), and UGC 4305 (Holmberg II). Using Hubble Space Telescope broad band WFC3/UVIS UV and optical images from the Treasury progr am LEGUS (Legacy ExtraGalactic UV Survey) combined with archival HST/ACS data, we correct thousands of individual stars for extinction across these five galaxies using an isochrone-matching (reddening-free Q) method. We generate extinction maps for each galaxy from the individual stellar extinctions using both adaptive and fixed resolution techniques, and correlate these maps with neutral HI and CO gas maps from literature, including The HI Nearby Galaxy Survey (THINGS) and the HERA CO-Line Extragalactic Survey (HERACLES). We calculate dust-to-gas ratios and investigate variations in the dust-to-gas ratio with galaxy metallicity. We find a power law relationship between dust-to-gas ratio and metallicity, consistent with other studies of dust-to-gas ratio compared to metallicity. We find a change in the relation when H$_2$ is not included. This implies that underestimation of $N_{H_2}$ in low-metallicity dwarfs from a too-low CO-to-H$_2$ conversion factor $X_{CO}$ could have produced too low a slope in the derived relationship between dust-to-gas ratio and metallicity. We also compare our extinctions to those derived from fitting the spectral energy distribution (SED) using the Bayesian Extinction and Stellar Tool (BEAST) for NGC 7793 and find systematically lower extinctions from SED-fitting as compared to isochrone matching.
We critique the method of constructing extinction curves of lensing galaxies using multiply imaged QSOs. If one of the two QSO images is lightly reddened or if the dust along both sightlines has the same properties then the method works well and prod uces an extinction curve for the lensing galaxy. These cases are likely rare and hard to confirm. However, if the dust along each sightline has different properties then the resulting curve is no longer a measurement of extinction. Instead, it is a measurement of the difference between two extinction curves. This lens difference curve does contain information about the dust properties, but extracting a meaningful extinction curve is not possible without additional, currently unknown information. As a quantitative example, we show that the combination of two Cardelli, Clayton, & Mathis (CCM) type extinction curves having different values of R(V) will produce a CCM extinction curve with a value of R(V) which is dependent on the individual R(V) values and the ratio of V band extinctions. The resulting lens difference curve is not an average of the dust along the two sightlines. We find that lens difference curves with any value of R(V), even negative values, can be produced by a combination of two reddened sightlines with different CCM extinction curves with R(V) values consistent with Milky Way dust (2.1 < R(V) < 5.6). This may explain extreme values of R(V) inferred by this method in previous studies. But lens difference curves with more normal values of R(V) are just as likely to be composed of two dust extinction curves with R(V) values different than that of the lens difference curve. While it is not possible to determine the individual extinction curves making up a lens difference curve, there is information about a galaxys dust contained in the lens difference curves.
Observations of neutral hydrogen (HI) and molecular gas show that 50% of all nearby early-type galaxies (ETGs) contain some cold gas. Molecular gas is always found in small gas discs in the central region of the galaxy, while neutral hydrogen is ofte n distributed in a low-column density disc or ring typically extending well beyond the stellar body. Dust is frequently found in ETGs as well. The goal of our study is to understand the link between dust and cold gas in nearby ETGs as a function of HI content. We analyse deep optical $g-r$ images obtained with the MegaCam camera at the Canada-France-Hawaii Telescope for a sample of 21 HI-rich and 41 HI-poor ETGs. We find that all HI-rich galaxies contain dust seen as absorption. Moreover, in 57 percent of these HI-rich galaxies, the dust is distributed in a large-scale spiral pattern. Although the dust detection rate is relatively high in the HI-poor galaxies ($sim$59 percent), most of these systems exhibit simpler dust morphologies without any evidence of spiral structures. We find that the HI-rich galaxies possess more complex dust morphology extending to almost two times larger radii than HI-poor objects. We measured the dust content of the galaxies from the optical colour excess and find that HI-rich galaxies contain six times more dust (in mass) than HI-poor ones. In order to maintain the dust structures in the galaxies, continuous gas accretion is needed, and the substantial HI gas reservoirs in the outer regions of ETGs can satisfy this need for a long time. We find that there is a good correspondence between the observed masses of the gas and dust, and it is also clear that dust is present in regions further than 3~Reff. Our findings indicate an essential relation between the presence of cold gas and dust in ETGs and offer a way to study the interstellar medium in more detail than what is possible with HI observations.
We discuss whether the behaviour of some hadronic quantities, such as the total cross-section, the ratio of the elastic to the total cross-section, are presently exhibiting the asymptotic behaviour expected at very large energies. We find phenomenolo gical evidence that at LHC7 there is still space for further evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا