ترغب بنشر مسار تعليمي؟ اضغط هنا

Cold gas and dust: Hunting spiral-like structures in early-type galaxies

70   0   0.0 ( 0 )
 نشر من قبل Mustafa Yildiz M.K.
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Observations of neutral hydrogen (HI) and molecular gas show that 50% of all nearby early-type galaxies (ETGs) contain some cold gas. Molecular gas is always found in small gas discs in the central region of the galaxy, while neutral hydrogen is often distributed in a low-column density disc or ring typically extending well beyond the stellar body. Dust is frequently found in ETGs as well. The goal of our study is to understand the link between dust and cold gas in nearby ETGs as a function of HI content. We analyse deep optical $g-r$ images obtained with the MegaCam camera at the Canada-France-Hawaii Telescope for a sample of 21 HI-rich and 41 HI-poor ETGs. We find that all HI-rich galaxies contain dust seen as absorption. Moreover, in 57 percent of these HI-rich galaxies, the dust is distributed in a large-scale spiral pattern. Although the dust detection rate is relatively high in the HI-poor galaxies ($sim$59 percent), most of these systems exhibit simpler dust morphologies without any evidence of spiral structures. We find that the HI-rich galaxies possess more complex dust morphology extending to almost two times larger radii than HI-poor objects. We measured the dust content of the galaxies from the optical colour excess and find that HI-rich galaxies contain six times more dust (in mass) than HI-poor ones. In order to maintain the dust structures in the galaxies, continuous gas accretion is needed, and the substantial HI gas reservoirs in the outer regions of ETGs can satisfy this need for a long time. We find that there is a good correspondence between the observed masses of the gas and dust, and it is also clear that dust is present in regions further than 3~Reff. Our findings indicate an essential relation between the presence of cold gas and dust in ETGs and offer a way to study the interstellar medium in more detail than what is possible with HI observations.

قيم البحث

اقرأ أيضاً

We present results of optical broad-band and narrow-band Halpha observations of a sample of forty nearby early-type galaxies. The majority of sample galaxies are known to have dust in various forms viz. dust lanes, nuclear dust and patchy/filamentary dust. A detailed study of dust was performed for 12 galaxies with prominent dust features. The extinction curves for these galaxies run parallel to the Galactic extinction curve, implying that the properties of dust in these galaxies are similar to those of the Milky-Way. The ratio of total to selective extinction (Rv) varies between 2.1 and 3.8, with an average of 2.9 +/- 0.2, fairly close to its canonical value of 3.1 for our Galaxy. The average relative grain size <a>/a_Gal of dust particles in these galaxies turns out to be 1.01 +/- 0.2, while dust mass estimated using optical extinction lies in the range 10^2 to 10^4 M(sun) . The Halpha emission was detected in 23 out of 29 galaxies imaged through narrow- band filters with the Halpha luminosities in the range 10^38 - 10^41 erg s^-1. The mass of the ionized gas is in the range 10^3-10^5 M(sun). The morphology and extent of ionized gas is found similar to those of dust, indicating possible coexistence of dust and ionized gas in these galaxies. The absence of any apparent correlation between blue luminosity and normalized IRAS dust mass is suggestive of merger related origin of dust and gas in these galaxies.
Recent work suggests blue ellipticals form in mergers and migrate quickly from the blue cloud of star-forming galaxies to the red sequence of passively evolving galaxies, perhaps as a result of black hole feedback. Such rapid reddening of stellar pop ulations implies that large gas reservoirs in the pre-merger star-forming pair must be depleted on short time scales. Here we present pilot observations of atomic hydrogen gas in four blue early-type galaxies that reveal increasing spatial offsets between the gas reservoirs and the stellar components of the galaxies, with advancing post-starburst age. Emission line spectra show associated nuclear activity in two of the merged galaxies, and in one case radio lobes aligned with the displaced gas reservoir. These early results suggest that a kinetic process (possibly feedback from black hole activity) is driving the quick truncation of star formation in these systems, rather than a simple exhaustion of gas supply.
128 - T. Kokusho , H. Kaneda , M. Bureau 2018
The properties of the dust in the cold and hot gas phases of early-type galaxies (ETGs) are key to understand ETG evolution. We thus conducted a systematic study of the dust in a large sample of local ETGs, focusing on relations between the dust and the molecular, atomic, and X-ray gas of the galaxies, as well as their environment. We estimated the dust temperatures and masses of the 260 ETGs from the ATLAS3D survey, using fits to their spectral energy distributions primarily constructed from AKARI measurements. We also used literature measurements of the cold (CO and HI) and X-ray gas phases. Our ETGs show no correlation between their dust and stellar masses, suggesting inefficient dust production by stars and/or dust destruction in X-ray gas. The global dust-to-gas mass ratios of ETGs are generally lower than those of late-type galaxies, likely due to dust-poor HI envelopes in ETGs. They are also higher in Virgo Cluster ETGs than in group and field ETGs, but the same ratios measured in the central parts of the galaxies only are independent of galaxy environment. Slow-rotating ETGs have systematically lower dust masses than fast-rotating ETGs. The dust masses and X-ray luminosities are correlated in fast-rotating ETGs, whose star formation rates are also correlated with the X-ray luminosities. The correlation between dust and X-rays in fast-rotating ETGs appears to be caused by residual star formation, while slow-rotating ETGs are likely well evolved, and thus exhausting their dust. These results appear consistent with the postulated evolution of ETGs, whereby fast-rotating ETGs form by mergers of late-type galaxies and associated bulge growth, while slow-rotating ETGs form by (dry) mergers of fast-rotating ETGs. Central cold dense gas appears to be resilient against ram pressure stripping, suggesting that Virgo Cluster ETGs may not suffer strong related star formation suppression.
We present IRAM 30m and APEX telescope observations of CO(1-0) and CO(2-1) lines in 36 group-dominant early-type galaxies, completing our molecular gas survey of dominant galaxies in the Complete Local-volume Groups Sample. We detect CO emission in 1 2 of the galaxies at >4sigma significance, with molecular gas masses in the range 0.01-6x10^8 Msol, as well as CO in absorption in the non-dominant group member galaxy NGC 5354. In total 21 of the 53 CLoGS dominant galaxies are detected in CO and we confirm our previous findings that they have low star formation rates (0.01-1 Msol/yr) but short depletion times (<1Gyr) implying rapid replenishment of their gas reservoirs. Comparing molecular gas mass with radio luminosity, we find that a much higher fraction of our group-dominant galaxies (60+-16%) are AGN-dominated than is the case for the general population of ellipticals, but that there is no clear connection between radio luminosity and the molecular gas mass. Using data from the literature, we find that at least 27 of the 53 CLoGS dominant galaxies contain HI, comparable to the fraction of nearby non-cluster early type galaxies detected in HI and significantly higher that the fraction in the Virgo cluster. We see no correlation between the presence of an X-ray detected intra-group medium and molecular gas in the dominant galaxy, but find that the HI-richest galaxies are located in X-ray faint groups. Morphological data from the literature suggests the cold gas component most commonly takes the form of a disk, but many systems show evidence of galaxy-galaxy interactions, indicating that they may have acquired their gas through stripping or mergers. We provide improved molecular gas mass estimates for two galaxies previously identified as being in the centres of cooling flows, NGC 4636 and NGC 5846, and find that they are relatively molecular gas poor compared to our other detected systems.
88 - Lisa M. Young 2014
I present an overview of new observations of atomic and molecular gas in early-type galaxies, focusing on the Atlas3D project. Our data on stellar kinematics, age and metallicity, and ionized gas kinematics allow us to place the cold gas into the bro ader context of early-type galaxy assembly and star formation history. The cold gas data also provide valuable constraints for numerical simulations of early-type galaxies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا