ﻻ يوجد ملخص باللغة العربية
We critique the method of constructing extinction curves of lensing galaxies using multiply imaged QSOs. If one of the two QSO images is lightly reddened or if the dust along both sightlines has the same properties then the method works well and produces an extinction curve for the lensing galaxy. These cases are likely rare and hard to confirm. However, if the dust along each sightline has different properties then the resulting curve is no longer a measurement of extinction. Instead, it is a measurement of the difference between two extinction curves. This lens difference curve does contain information about the dust properties, but extracting a meaningful extinction curve is not possible without additional, currently unknown information. As a quantitative example, we show that the combination of two Cardelli, Clayton, & Mathis (CCM) type extinction curves having different values of R(V) will produce a CCM extinction curve with a value of R(V) which is dependent on the individual R(V) values and the ratio of V band extinctions. The resulting lens difference curve is not an average of the dust along the two sightlines. We find that lens difference curves with any value of R(V), even negative values, can be produced by a combination of two reddened sightlines with different CCM extinction curves with R(V) values consistent with Milky Way dust (2.1 < R(V) < 5.6). This may explain extreme values of R(V) inferred by this method in previous studies. But lens difference curves with more normal values of R(V) are just as likely to be composed of two dust extinction curves with R(V) values different than that of the lens difference curve. While it is not possible to determine the individual extinction curves making up a lens difference curve, there is information about a galaxys dust contained in the lens difference curves.
The composition and amount of interstellar dust within gamma-ray burst (GRB) host galaxies is of key importance when addressing selection effects in the GRB redshift distribution, and when studying the properties of their host galaxies. As well as th
Dust grains can be efficiently accelerated and shattered in warm ionized medium (WIM) because of the turbulent motion. This effect is enhanced in starburst galaxies, where gas is ionized and turbulence is sustained by massive stars. Moreover, dust pr
We determine 37 differential extinctions in 23 gravitational lens galaxies over the range 0 < z_l < 1. Only 7 of the 23 systems have spectral differences consistent with no differential extinction. The median differential extinction for the optically
We calculate the net extinction of galactic light as a function of wavelength, inclination, central optical depth, and morphology for simple galactic geometries using the Hyperion radiative transfer code. Compared to previous, similar works we tabula
The large majority of extinction sight lines in our Galaxy obey a simple relation depending on one parameter, the total-to-selective extinction coefficient, Rv. Different values of Rv are able to match the whole extinction curve through different env