ﻻ يوجد ملخص باللغة العربية
We report the observation of an unusual behavior of highly extended 5d electrons in Y2Ir2O7 belonging to pyrochlore family of great current interest using high resolution photoemission spectroscopy. The experimental bulk spectra reveal an intense lower Hubbard band in addition to weak intensities in the vicinity of the Fermi level, e_F. This provides a direct evidence for strong electron correlation among the 5d electrons, despite their highly extended nature. The high resolution spectrum at room temperature exhibits a pseudogap at e_F and |e - e_F|^2 dependence demonstrating the importance of electron correlation in this system. Remarkably, in the magnetically ordered phase (T < 150 K), the spectral lineshape evolves to a |e - e_F|^1.5 dependence emphasizing the dominant role of electron-magnon coupling.
The interactions between electrons and antiferromagnetic magnons (AFMMs) are important for a large class of correlated materials. For example, they are the most plausible pairing glues in high-temperature superconductors, such as cuprates and iron pn
In atomic physics, the Hund rule says that the largest spin and orbital state is realized due to the interplay of the spin-orbit coupling (SOC) and the Coulomb interactions. Here, we show that in ferromagnetic solids the effective SOC and the orbital
Concise and powerful mathematical descriptions of the interplay of spin and charge degrees of degrees of freedom with crystal lattice fluctuations are of extreme importance in materials science. Such descriptions allow structured approaches to optimi
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkab
We perform thermodynamic and inelastic neutron scattering (INS) measurements to study the lattice dynamics (phonons) of a cubic collinear antiferromagnet Cu$_3$TeO$_6$ which hosts topological spin excitations (magnons). While the specific heat and th