ترغب بنشر مسار تعليمي؟ اضغط هنا

An SU(3) Yang-Mills Structure for Electron-Phonon Interactions Resulting from Strong Electron Correlations in 2D hexagonal lattices

59   0   0.0 ( 0 )
 نشر من قبل Jamie Booth
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Jamie M. Booth




اسأل ChatGPT حول البحث

Concise and powerful mathematical descriptions of the interplay of spin and charge degrees of degrees of freedom with crystal lattice fluctuations are of extreme importance in materials science. Such descriptions allow structured approaches to optimizing material efficiencies resulting in considerable resource savings and higher performance devices. In this work, by re-imagining the the Gell-Mann matrices as 3$times$3 linear transformations acting on a column vector of position states, an SU(3) theory of the interplay between lattice fluctuations and strong electron correlations in 2-dimensional hexagonal materials such as graphene is formulated.

قيم البحث

اقرأ أيضاً

This work presents a method of grouping the electron spinors and the acoustic phonon modes of polar crystals such as metal oxides into an SU(2) gauge theory. The gauge charge is the electron spin, which is assumed to couple to the transverse acoustic phonons on the basis of spin ordering phenomena in crystals such as V$_{2}$O$_{3}$ and VO$_{2}$, while the longitudinal mode is neutral. A generalization the Peierls mechanism is presented based on the discrete gauge invariance of crystals and the corresponding Ward-Takahashi identity. The introduction of a band index violates the Ward-Takahashi identity for interband transitions resulting in a longitudinal component appearing in the upper phonon band. Thus both the spinors and the vector bosons acquire mass and a crystal with an electronic band gap and optical phonon modes results. In the limit that the coupling of bosons charged under the SU(2) gauge group goes to zero, breaking the electron U(1) symmetry recovers the BCS mechanism. In the limit that the neutral boson decouples, a Cooper instability mediated by spin-wave exchange results from symmetry breaking, i.e. unconventional superconductivity mediated by magnetic interactions.
We report the observation of an unusual behavior of highly extended 5d electrons in Y2Ir2O7 belonging to pyrochlore family of great current interest using high resolution photoemission spectroscopy. The experimental bulk spectra reveal an intense low er Hubbard band in addition to weak intensities in the vicinity of the Fermi level, e_F. This provides a direct evidence for strong electron correlation among the 5d electrons, despite their highly extended nature. The high resolution spectrum at room temperature exhibits a pseudogap at e_F and |e - e_F|^2 dependence demonstrating the importance of electron correlation in this system. Remarkably, in the magnetically ordered phase (T < 150 K), the spectral lineshape evolves to a |e - e_F|^1.5 dependence emphasizing the dominant role of electron-magnon coupling.
Understanding the physics of strongly correlated electronic systems has been a central issue in condensed matter physics for decades. In transition metal oxides, strong correlations characteristic of narrow $d$ bands is at the origin of such remarkab le properties as the Mott gap opening, enhanced effective mass, and anomalous vibronic coupling, to mention a few. SrVO$_3$, with V$^{4+}$ in a $3d^1$ electronic configuration is the simplest example of a 3D correlated metallic electronic system. Here, we focus on the observation of a (roughly) quadratic temperature dependence of the inverse electron mobility of this seemingly simple system, which is an intriguing property shared by other metallic oxides. The systematic analysis of electronic transport in SrVO$_3$ thin films discloses the limitations of the simplest picture of e-e correlations in a Fermi liquid; instead, we show that the quasi-2D topology of the Fermi surface and a strong electron-phonon coupling, contributing to dress carriers with a phonon cloud, play a pivotal role on the reported electron spectroscopic, optical, thermodynamic and transport data. The picture that emerges is not restricted to SrVO$_3$ but can be shared with other $3d$ and $4d$ metallic oxides.
An essential ingredient in many model Hamiltonians, such as the Hubbard model, is the effective electron-electron interaction $U$, which enters as matrix elements in some localized basis. These matrix elements provide the necessary information in the model, but the localized basis is incomplete for describing $U$. We present a systematic scheme for computing the manifestly basis-independent dynamical interaction in position representation, $U({bf r},{bf r};omega)$, and its Fourier transform to time domain, $U({bf r},{bf r};tau)$. These functions can serve as an unbiased tool for the construction of model Hamiltonians. For illustration we apply the scheme within the constrained random-phase approximation to the cuprate parent compounds La$_2$CuO$_4$ and HgBa$_2$CuO$_4$ within the commonly used 1- and 3-band models, and to non-superconducting SrVO$_{3}$ within the $t_{2g}$ model. Our method is used to investigate the shape and strength of screening channels in the compounds. We show that the O 2$p_{x,y}-$Cu 3$d_{x^2-y^2}$ screening gives rise to regions with strong attractive static interaction in the minimal (1-band) model in both cuprates. On the other hand, in the minimal ($t_{2g}$) model of SrVO$_3$ only regions with a minute attractive interaction are found. The temporal interaction exhibits generic damped oscillations in all compounds, and its time-integral is shown to be the potential caused by inserting a frozen point charge at $tau=0$. When studying the latter within the three-band model for the cuprates, short time intervals are found to produce a negative potential.
We present a theoretical approach to determine the electronic properties of nanoscale systems exhibiting strong electron-electron and electron-phonon interactions and coupled to metallic electrodes. This approach is based on an interpolative ansatz f or the electronic self-energy which becomes exact both in the limit of weak and strong coupling to the electrodes. The method provides a generalization of previous interpolative schemes which have been applied to the purely electronic case extensively. As a test case we consider the single level Anderson-Holstein model. The results obtained with the interpolative ansatz are in good agreement with existing data from Numerical Renormalization Group calculations. We also check our results by considering the case of the electrodes represented by a few discrete levels which can be diagonalized exactly. The approximation describes properly the transition from the Kondo regime where electron-electron interactions dominate to the polaronic case characterized by a strong electron-phonon interaction.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا