ﻻ يوجد ملخص باللغة العربية
The interactions between electrons and antiferromagnetic magnons (AFMMs) are important for a large class of correlated materials. For example, they are the most plausible pairing glues in high-temperature superconductors, such as cuprates and iron pnictides. However, unlike electron-phonon interactions (EPIs), clear-cut observations regarding how electron-AFMM interactions (EAIs) affect the band structure are still lacking. Consequently, critical information on the EAIs, such as its strength and doping dependence, remains elusive. Here we directly observe that EAIs induces a kink structure in the band dispersion in Ba$_{1-x}$K$_x$Mn$_2$As$_2$, and subsequently unveil several key characteristics of EAIs. We found that the coupling constant of EAIs can be as large as 6, and it shows huge doping dependence and temperature dependence, all in stark contrast to the behaviors of EPI and beyond our current understanding of EAIs. Such a colossal renormalization of electronic bands by EAIs drives the system to the Stoner criteria, giving the intriguing ferromagnetic state in Ba$_{1-x}$K$_x$Mn$_2$As$_2$. Our results expand the current knowledge of EAIs, which may facilitate the further understanding of many correlated materials where EAIs play a critical role, such as high-temperature superconductors.
We report the observation of an unusual behavior of highly extended 5d electrons in Y2Ir2O7 belonging to pyrochlore family of great current interest using high resolution photoemission spectroscopy. The experimental bulk spectra reveal an intense low
We report on low-energy electronic structure and electronic correlations of K$_{0.65}$RhO$_2$, studied using high-resolution angle-resolved photoemission spectroscopy (ARPES) technique and density functional theory (DFT) calculations. We observe a hi
Antiferromagnetism (AF) such as Neel ordering is often closely related to Coulomb interactions such as Hubbard repulsion in two-dimensional (2D) systems. Whether Neel AF ordering in 2D can be dominantly induced by electron-phonon couplings (EPC) has
CaCo$_{2-y}$As$_2$ is an unusual itinerant magnet with signatures of extreme magnetic frustration. The conditions for establishing magnetic order in such itinerant frustrated magnets, either by reducing frustration or enhancing the Stoner parameter,
By performing angle-resolved photoemission spectroscopy of the bilayer colossal magnetoresistive (CMR) manganite, $La_{2-2x}Sr_{1+2x}Mn_{2}O_{7}$, we provide the complete mapping of the Fermi level spectral weight topology. Clear and unambiguous bila