ترغب بنشر مسار تعليمي؟ اضغط هنا

Discrete nonlinear hyperbolic equations. Classification of integrable cases

194   0   0.0 ( 0 )
 نشر من قبل Alexander I. Bobenko
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider discrete nonlinear hyperbolic equations on quad-graphs, in particular on the square lattice. The fields are associated to the vertices and an equation Q(x_1,x_2,x_3,x_4)=0 relates four fields at one quad. Integrability of equations is understood as 3D-consistency. The latter is a possibility to consistently impose equations of the same type on all the faces of a three-dimensional cube. This allows to set these equations also on multidimensional lattices Z^N. We classify integrable equations with complex fields x, and Q affine-linear with respect to all arguments. The method is based on analysis of singular solutions.



قيم البحث

اقرأ أيضاً

267 - S.P. Tsarev , T. Wolf 2007
We classify all integrable 3-dimensional scalar discrete quasilinear equations Q=0 on an elementary cubic cell of the 3-dimensional lattice. An equation Q=0 is called integrable if it may be consistently imposed on all 3-dimensional elementary faces of the 4-dimensional lattice. Under the natural requirement of invariance of the equation under the action of the complete group of symmetries of the cube we prove that the only nontrivial (non-linearizable) integrable equation from this class is the well-known dBKP-system. (Version 2: A small correction in Table 1 (p.7) for n=2 has been made.) (Version 3: A few small corrections: one more reference added, the main statement stated more explicitly.)
330 - B.G.Konopelchenko 2008
Deformations of the structure constants for a class of associative noncommutative algebras generated by Deformation Driving Algebras (DDAs) are defined and studied. These deformations are governed by the Central System (CS). Such a CS is studied for the case of DDA being the algebra of shifts. Concrete examples of deformations for the three-dimensional algebra governed by discrete and mixed continuous-discrete Boussinesq (BSQ) and WDVV equations are presented. It is shown that the theory of the Darboux transformations, at least for the BSQ case, is completely incorporated into the proposed scheme of deformations.
Group classification of a class of third-order nonlinear evolution equations generalizing KdV and mKdV equations is performed. It is shown that there are two equations admitting simple Lie algebras of dimension three. Next, we prove that there exist only four equations invariant with respect to Lie algebras having nontrivial Levi factors of dimension four and six. Our analysis shows that there are no equations invariant under algebras which are semi-direct sums of Levi factor and radical. Making use of these results we prove that there are three, nine, thirty-eight, fifty-two inequivalent KdV-type nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively. Finally, we perform a complete group classification of the most general linear third-order evolution equation.
In the series of recent publications we have proposed a novel approach to the classification of integrable differential/difference equations in 3D based on the requirement that hydrodynamic reductions of the corresponding dispersionless limits are `i nherited by the dispersive equations. In this paper we extend this to the fully discrete case. Our only constraint is that the initial ansatz possesses a non-degenerate dispersionless limit (this is the case for all known Hirota-type equations). Based on the method of deformations of hydrodynamic reductions, we classify discrete 3D integrable Hirota-type equations within various particularly interesting subclasses. Our method can be viewed as an alternative to the conventional multi-dimensional consistency approach.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا