ﻻ يوجد ملخص باللغة العربية
Group classification of a class of third-order nonlinear evolution equations generalizing KdV and mKdV equations is performed. It is shown that there are two equations admitting simple Lie algebras of dimension three. Next, we prove that there exist only four equations invariant with respect to Lie algebras having nontrivial Levi factors of dimension four and six. Our analysis shows that there are no equations invariant under algebras which are semi-direct sums of Levi factor and radical. Making use of these results we prove that there are three, nine, thirty-eight, fifty-two inequivalent KdV-type nonlinear evolution equations admitting one-, two-, three-, and four-dimensional solvable Lie algebras, respectively. Finally, we perform a complete group classification of the most general linear third-order evolution equation.
We give a Lie-algebraic classification of third order quasilinear equations which admit non-trivial Lie point symmetries.
We consider discrete nonlinear hyperbolic equations on quad-graphs, in particular on the square lattice. The fields are associated to the vertices and an equation Q(x_1,x_2,x_3,x_4)=0 relates four fields at one quad. Integrability of equations is und
Supersymmetrization of a nonlinear evolution equation in which the bosonic equation is independent of the fermionic variable and the system is linear in fermionic field goes by the name B-supersymmetrization. This special type of supersymmetrization
The paper begins with a review of the well known Novikovs equations and corresponding finite KdV hierarchies. For a positive integer $N$ we give an explicit description of the $N$-th Novikovs equation and its first integrals. Its finite KdV hierarchy
We study higher order KdV equations from the GL(2,$mathbb{R}$) $cong$ SO(2,1) Lie group point of view. We find elliptic solutions of higher order KdV equations up to the ninth order. We argue that the main structure of the trigonometric/hyperbolic/el