ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuous-discrete integrable equations and Darboux transformations as deformations of associative algebras

319   0   0.0 ( 0 )
 نشر من قبل Boris Konopelchenko
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف B.G.Konopelchenko




اسأل ChatGPT حول البحث

Deformations of the structure constants for a class of associative noncommutative algebras generated by Deformation Driving Algebras (DDAs) are defined and studied. These deformations are governed by the Central System (CS). Such a CS is studied for the case of DDA being the algebra of shifts. Concrete examples of deformations for the three-dimensional algebra governed by discrete and mixed continuous-discrete Boussinesq (BSQ) and WDVV equations are presented. It is shown that the theory of the Darboux transformations, at least for the BSQ case, is completely incorporated into the proposed scheme of deformations.



قيم البحث

اقرأ أيضاً

194 - B.G.Konopelchenko 2009
Interrelations between discrete deformations of the structure constants for associative algebras and discrete integrable systems are reviewed. A theory of deformations for associative algebras is presented. Closed left ideal generated by the elements representing the multiplication table plays a central role in this theory. Deformations of the structure constants are generated by the Deformation Driving Algebra and governed by the central system of equations. It is demonstrated that many discrete equations like discrete Boussinesq equation, discrete WDVV equation, discrete Schwarzian KP and BKP equations, discrete Hirota-Miwa equations for KP and BKP hierarchies are particular realizations of the central system. An interaction between the theories of discrete integrable systems and discrete deformations of associative algebras is reciprocal and fruitful.An interpretation of the Menelaus relation (discrete Schwarzian KP equation), discrete Hirota-Miwa equation for KP hierarchy, consistency around the cube as the associativity conditions and the concept of gauge equivalence, for instance, between the Menelaus and KP configurations are particular examples.
191 - B.G.Konopelchenko 2008
Discrete and q-difference deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by a central system of discrete or q-difference equations which in particular cases represent discrete and q-differenc
208 - B.G.Konopelchenko 2008
Quantum deformations of the structure constants for a class of associative noncommutative algebras are studied. It is shown that these deformations are governed by the quantum central systems which has a geometrical meaning of vanishing Riemann curva ture tensor for Christoffel symbols identified with the structure constants. A subclass of isoassociative quantum deformations is described by the oriented associativity equation and, in particular, by the WDVV equation. It is demonstrated that a wider class of weakly (non)associative quantum deformations is connected with the integrable soliton equations too. In particular, such deformations for the three-dimensional and infinite-dimensional algebras are described by the Boussinesq equation and KP hierarchy, respectively.
363 - B.G.Konopelchenko , F.Magri 2006
Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain algebras and other algebraic structures like Jordan triple systInterpretation of dispersionless integrable hierarchies as equations of coisot ropic deformations for certain algebras and other algebraic structures like Jordan triple systems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level. ems is discussed. Several generalizations are considered. Stationary reductions of the dispersionless integrable equations are shown to be connected with the dynamical systems on the plane completely integrable on a fixed energy level.
168 - Oleg I. Morozov 2018
We consider the four-dimensional reduced quasi-classical self-dual Yang--Mills equation and show that non-triviality of the second exotic cohomology group of its symmetry algebra implies existence of a two-component integrable generalization of this equation. The sequence of natural extensions of this symmetry algebra generate an integrable hierarchy of multi-dimensional nonlinear PDEs. We write out the first three elements of this hierarchy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا