تركز أنظمة الكشف عن الساركاز الموجودة على استغلال العلامات اللغوية أو السياق أو البثور على مستوى المستخدم. ومع ذلك، تشير الدراسات الاجتماعية إلى أن العلاقة بين المؤلف والجمهور يمكن أن تكون ذات صلة بنفس القدر لاستخدام السخرية وتفسيرها. في هذا العمل، نقترح إطارا بالاستفادة المشتركة (1) سياق مستخدم من تغريداتهم التاريخية مع (2) المعلومات الاجتماعية من حي المستخدم في رسم بياني تفاعل، إلى السياق تفسير المنشور. نحن نميز بين الهوية المتصورة والمبلغ عنها الذاتي. نستخدم شبكات انتباه الرسوم البيانية (GAT) عبر المستخدمين والتويت في مؤشر ترابط محادثة، جنبا إلى جنب مع العديد من تمثيلات سجل المستخدم كثيفة. بصرف النظر عن تحقيق نتائج حديثة على مجموعة البيانات التي تم نشرها مؤخرا من مستخدمي Twitter مؤخرا مع تغريدات ثلاثية العدد 30K، قم بإضافة تغريدات 10M Unabeled كسياق، تشير تجاربنا إلى أن شبكة الرسم البياني تساهم في تفسير النوايا الساخرة للمؤلف أكثر من للتنبؤ بتصور السخرية من قبل الآخرين.
Existing sarcasm detection systems focus on exploiting linguistic markers, context, or user-level priors. However, social studies suggest that the relationship between the author and the audience can be equally relevant for the sarcasm usage and interpretation. In this work, we propose a framework jointly leveraging (1) a user context from their historical tweets together with (2) the social information from a user's neighborhood in an interaction graph, to contextualize the interpretation of the post. We distinguish between perceived and self-reported sarcasm identification. We use graph attention networks (GAT) over users and tweets in a conversation thread, combined with various dense user history representations. Apart from achieving state-of-the-art results on the recently published dataset of 19k Twitter users with 30K labeled tweets, adding 10M unlabeled tweets as context, our experiments indicate that the graph network contributes to interpreting the sarcastic intentions of the author more than to predicting the sarcasm perception by others.
المراجع المستخدمة
https://aclanthology.org/
تركز أنظمة الكشف عن الساركاز الموجودة على استغلال العلامات اللغوية أو السياق أو البثور على مستوى المستخدم.ومع ذلك، تشير الدراسات الاجتماعية إلى أن العلاقة بين المؤلف والجمهور يمكن أن تكون ذات صلة بنفس القدر لاستخدام السخرية وتفسيرها.في هذا العمل، نقت
أظهرت التقدم المحرز الأخير في نماذج اللغة المستندة إلى المحولات الاحترام نجاحا كبيرا في تعلم التمثيل السياقي للنص.ومع ذلك، نظرا لتعقيد الاهتمام من الدرجة الثانية، يمكن لمعظم نماذج المحولات مسبقا التعامل مع النص القصير نسبيا.لا يزال يمثل تحديا عندما ي
تم تجاهل المعلومات النحوية والدلية الخارجية إلى حد كبير من قبل نماذج حل النواة العصبية الحالية.في هذه الورقة، نقدم نموذجا مقرا له من الرسوم البيانية غير متجانسة لإدماج الهياكل النحوية والدلالية للجمل.يحتوي الرسم البياني المقترح على رسم بياني فرعي سنو
تهدف مهمة اكتشاف الحدث (ED) إلى تصنيف الأحداث من خلال تحديد الحدث الرئيسي تصادف الكلمات المضمنة في جزء من النص. أثبتت الأبحاث السابقة صحة علاقات التبعية النحوية الصابورة في شبكات تشكيلة تشكيلة (GCN). في حين أن الأساليب القائمة على GCN الحالية تستكشف
السخرية عبارة عن تعبير لغوي يستخدم في كثير من الأحيان للتواصل مع عكس ما يقال، وعادة ما يكون شيئا غير سار للغاية بقصد الإهانة أو السخرية.الغموض الكامنة في التعبيرات الساخرة يجعل اكتشاف السخرية صعبة للغاية.في هذا العمل، نركز على الكشف عن السخرية في محا