ترغب بنشر مسار تعليمي؟ اضغط هنا

HATERBERT: إعادة تدريب بيرت للكشف عن اللغة المسيئة باللغة الإنجليزية

HateBERT: Retraining BERT for Abusive Language Detection in English

665   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نقدم HATEBERT، نموذج BERT الذي تم تدريبه على إعادة تدريب للكشف عن اللغة المسيئة باللغة الإنجليزية.تم تدريب النموذج على RAL-E، وهي مجموعة بيانات واسعة النطاق من تعليقات Reddit باللغة الإنجليزية من المجتمعات المحظورة لكونها مسيئة أو بغيضة حيث قمنا بإتاحتها للجمهور.نقدم نتائج مقارنة مفصلة بين نموذج اللغة المدرب مسبقا والنسخة المستقلة على ثلاث مجموعات بيانات باللغة الإنجليزية لمهام الهجومية والمسيئة ومهام الكشف عن الكلام.في جميع مجموعات البيانات، تتفوق HateBERT على نموذج بيرت العام.ونناقش أيضا مجموعة تجارب تقارن إمكانية نقل النماذج الصعبة في مجموعات البيانات، مما يشير إلى أن القدرة على التأثر بالتوافق مع الظواهر المشروحة.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

نظرا لأن النهج القائم على المعجم هو أكثر أناقة علميا، أوضح مكونات الحل وأسهل التعميم إلى التطبيقات الأخرى، توفر هذه الورقة نهجا جديدا للغة الهجومية والكشف عن الكلام على وسائل التواصل الاجتماعي، والتي تجسد معجم من الهجوم الضمني والبريثوإقتصار التعبيرا ت المشروح مع المعلومات السياقية.نظرا لشدة تعليقات وسائل التواصل الاجتماعي المسيئة في البرازيل، وعدم وجود أبحاث باللغة البرتغالية والبرتغالية البرازيلية هي اللغة المستخدمة للتحقق من صحة النماذج.ومع ذلك، قد يتم تطبيق طريقتنا على أي لغة أخرى.تظهر التجارب التي أجراها فعالية النهج المقترح، مما يتفوق على الأساليب الأساسية الحالية للغة البرتغالية.
تبلغ نماذج الكشف عن اللغة المسيئة للحكومة الأمريكية أداء كبير في Corpus، ولكن أداء الفضل عند تقييم التعليقات المسيئة التي تختلف عن سيناريو التدريب.نظرا لأن الشروح البشرية ينطوي على وقت وجهد كبير، فإن النماذج التي يمكن أن تتكيف مع التعليقات التي تم جم عها حديثا يمكن أن تكون مفيدة.في هذه الورقة، نحقق في فعالية العديد من نهج تكيف النطاقات غير المدمرة (UDA) لمهمة الكشف عن اللغة المسيئة.بالمقارنة، نقوم بتكييف متغير نموذج BERT، تدربت على تعليقات مسيئة واسعة النطاق، باستخدام طراز لغة ملثم (MLM)يوضح تقييمنا أن نهج UDA تؤدي إلى أداء فرعي الأمثل، في حين أن ضبط الريامة الجميلة لا يتحسن في إعداد العرض.يكشف التحليل المفصل عن حدود نهج UDA ويؤكد على الحاجة إلى بناء طرق تكيف فعالة لهذه المهمة.
ساهم تقدم تقنية الويب والمعلومات في النمو السريع للمكتبات الرقمية وأدوات ترجمة الآلات التلقائية والتي تقوم بسهولة بترجمة النصوص من لغة إلى أخرى. وقد زادت هذه المحتوى في الوصول إلى لغات مختلفة، مما يؤدي إلى أداء الانتحال المترجم بسهولة، يشار إليها باس م الانتحال عبر اللغة ". التعرف على الانتحال بين النصوص بلغات مختلفة هو أكثر تحديا من تحديد الانتحال داخل وجعة مكتوبة بنفس اللغة. تقترح هذه الورقة تقنية جديدة لتعزيز اكتشاف الانتحال باللغة الإنجليزية والعربية على مستوى الجملة. تستند هذه التقنية إلى استخراج ميزة دلالية ونقصية باستخدام ترتيب Word و Word AdgetDing و MIGNIMENT مع ترميزات متعددة اللغات. يتم بعد ذلك استخدام هذه الميزات ومجمديها مع خوارزميات مختلفة لتعلم الآلات (ML) من أجل المساعدة في تصنيف الجمل كإخلاء إما مكسوين أو غير متسائل. تم نشر النهج المقترح وتقييمه باستخدام مجموعات البيانات المقدمة في Semeval-2017. يوضح تحليل البيانات التجريبية المستخدمة في استخدام الميزات المستخرجة ومجموعاتها مع مختلف منصات ML، تحقق نتائج واعدة.
الكشف عن السخرية هو واحد من أفضل المهام الصعبة في تصنيف النص، لا سيما بالنسبة للغة العربية غير الرسمية بالغشاء النحوي والدلي العالي.نقترح أنظمتين تسخير المعرفة من مهام متعددة لتحسين أداء المصنف.تقدم هذه الورقة أنظمة المستخدمة في مشاركتنا إلى المهام ا لفرعية لورشة معالجة اللغات الطبيعية العربية السادسة (WANLP)؛تحليل السخرية وتحليل المعنويات.المنهجيات الخاصة بنا مدفوعة بفرضية أن التغريدات ذات الشعور السلبي والثغرات السلبية مع محتوى السخرية من غير المرجح أن يكون لها محتوى مسيء، وبالتالي، تؤدي إلى ضبط طراز التصنيف باستخدام كوربوس كبيرة من اللغة المسيئة، عملية التعلم للنموذج للكشف بشكل فعالالمعنويات ومحتويات السخرية.توضح النتائج فعالية نهجنا لمهمة الكشف عن السخرية على مهمة تحليل المعنويات.
أظهرت أنظمة الكشف عن اللغة المسيئة الحالية التحيز غير المقصود تجاه ميزات حساسة مثل الجنسية أو الجنس. هذه قضية حاسمة، والتي قد تؤذي الأقليات والجماعات الممثلة تمثيلا ناقصا إذا تم دمج هذه الأنظمة في تطبيقات العالم الحقيقي. في هذه الورقة، نقوم بإنشاء اخ تبارات مخصصة من خلال أداة قائمة المراجعة (Ribeiro et al.، 2020) للكشف عن التحيزات داخل مصنفات اللغة المسيئة للغة الإنجليزية. نقارن سلوك نماذج استنادتين في بيرت، واحد مدرب على مجموعة بيانات الكلام الكراهية العامة والآخر في مجموعة بيانات للكشف عن الحرج. يوضح تقييمنا أنه على الرغم من أن المصنفات القائمة على بيرت تحقق مستويات عالية الدقة على مجموعة متنوعة من مهام معالجة اللغة الطبيعية، فإنها تؤدي بشكل سيء للغاية فيما يتعلق بالإنصاف والتحيز، لا سيما بشأن العينات التي تنطوي على الصور النمطية الضمنية، وتعبيرات عن الكراهية نحو الأقليات والسمات المحمية كما العرق أو الميل الجنسي. نطلق سراح كل من أجهزة الكمبيوتر المحمولة المنفذة لتوسيع اختبارات الإنصاف ومجموعات البيانات الاصطناعية التي يمكن استخدامها لتقييم تنظيم الأنظمة بشكل مستقل عن قائمة المراجعة.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا