تمثل قدرة تعلم التعلم من تمثيلات الإعجاب خطوة رئيسية لأنظمة NLP القابلة للتفسير حيث تتيح السيطرة على الميزات اللغوية الكامنة.تعتمد معظم الأساليب التي يتعرض لها DEVENTANGLEMELLEMES على المتغيرات المستمرة، سواء بالنسبة للصور والنص.نقول أنه على الرغم من أن تكون مناسبا لمجموعات بيانات الصورة، قد لا تكون المتغيرات المستمرة مثالية لميزات نموذجية للبيانات النصية، بسبب حقيقة أن معظم العوامل الإدارية في النص منفصلة منفصلة.نقترح طريقة استنادا عن السيارات التلقائية التي تتميز بها النماذج بمثابة متغيرات منفصلة وتشجع الاستقلال بين المتغيرات لتعلم تمثيلات الإعانات.يتفوق النموذج المقترح على خطوط أساسية مستمرة ومنفصلة حول العديد من المعايير النوعية والكمية لإجراءات DEVENTANGELES وكذلك على تطبيق Text Style Toystream.
The ability of learning disentangled representations represents a major step for interpretable NLP systems as it allows latent linguistic features to be controlled. Most approaches to disentanglement rely on continuous variables, both for images and text. We argue that despite being suitable for image datasets, continuous variables may not be ideal to model features of textual data, due to the fact that most generative factors in text are discrete. We propose a Variational Autoencoder based method which models language features as discrete variables and encourages independence between variables for learning disentangled representations. The proposed model outperforms continuous and discrete baselines on several qualitative and quantitative benchmarks for disentanglement as well as on a text style transfer downstream application.
المراجع المستخدمة
https://aclanthology.org/
أصبحت السيارات التلقائية النصية النصية (VAES) سيئة السمعة بالنسبة للانهيار الخلفي، وهي ظاهرة حيث يتعلم وحدة فك ترميز النموذج أن تجاهل الإشارات من التشفير.نظرا لأنه من المعروف أن الانهيار الخلفي يتم تفاقمه من خلال أجهزة فك ترميز التعبير، فقد شهدت المح
نظرا لفيديو غير جذوع واستعلام لغة طبيعية، يهدف توطين فيديو اللغة الطبيعي (NLVL) إلى تحديد لحظة الفيديو الموصوفة بواسطة الاستعلام. لمعالجة هذه المهمة، يمكن تجميع الأساليب الحالية تقريبا إلى مجموعتين: 1) نماذج اقتراح ورتبة تحدد أولا مجموعة من المرشحين
يحقق نماذج اللغة التعلم المستندة عميقا (DL) أداء عال في مختلف المعايير لاستدلال اللغة الطبيعية (NLI).وفي هذا الوقت، يتلقى النهج الرمزية ل NLI اهتماما أقل.كلا النهجين (الرمزي و DL) لديهم مزاياهم وموضعاتهم.ومع ذلك، حاليا، لا توجد طريقة تجمع بينها في نظ
تمت دراسة AcoNecoders Varitional كهدوء واعد لنموذج تعيينات واحدة إلى العديد من السياق للاستجابة في توليد استجابة الدردشة.ومع ذلك، غالبا ما تفشل في تعلم التعيينات المناسبة.أحد أسباب هذا الفشل هو التناقض بين الاستجابة وأخذ عينات متغير كامنة من توزيع تق
لقد كانت معروفة منذ فترة طويلة أن Sparsity هي تحيز حثي فعال لتعلم التمثيل الفعال للبيانات في المتجهات ذات الأبعاد الثابتة، وقد تم استكشافها في العديد من مجالات التعلم التمثيل. من اهتمام خاص بهذا العمل هو التحقيق في Sparsity ضمن إطار VAE الذي تم استكش