ترغب بنشر مسار تعليمي؟ اضغط هنا

التعلم جملة متلقجة تشفير دون إشراف: استكشاف Sparsity في السيارات الآلية المتنوعة

Learning Sparse Sentence Encoding without Supervision: An Exploration of Sparsity in Variational Autoencoders

289   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

لقد كانت معروفة منذ فترة طويلة أن Sparsity هي تحيز حثي فعال لتعلم التمثيل الفعال للبيانات في المتجهات ذات الأبعاد الثابتة، وقد تم استكشافها في العديد من مجالات التعلم التمثيل. من اهتمام خاص بهذا العمل هو التحقيق في Sparsity ضمن إطار VAE الذي تم استكشافه كثيرا في مجال الصورة، ولكنه كان يفتقر إلى مستوى الاستكشاف الأساسي في NLP. بالإضافة إلى ذلك، يتخلف NLP أيضا من حيث تعلم تمثيلات متفرق لوحدات نصية كبيرة على سبيل المثال، الجمل. نحن نستخدم VAES التي تحفز التمثيلات الكامنة المتفرقة لوحدات نصية كبيرة لمعالجة أوجه القصور المذكورة أعلاه. أولا، ننتقل في هذا الاتجاه من خلال قياس نجاح الحالة غير المعردة للدولة (SOTA) وغيرها من خطوط الأساس السريع في VAE للنص واقتراح نموذج VIE هرمي متفرق لمعالجة مشكلة الاستقرار في سوتا. بعد ذلك، ننظر إلى آثار Sparsity على تصنيف النص عبر 3 مجموعات من مجموعات البيانات، وتسليط الضوء على ارتباط بين أداء التمثيلات الكامنة المتفرعة حول مهام المصب وقدرته على تشفير المعلومات المتعلقة بالمهام.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تمت دراسة AcoNecoders Varitional كهدوء واعد لنموذج تعيينات واحدة إلى العديد من السياق للاستجابة في توليد استجابة الدردشة.ومع ذلك، غالبا ما تفشل في تعلم التعيينات المناسبة.أحد أسباب هذا الفشل هو التناقض بين الاستجابة وأخذ عينات متغير كامنة من توزيع تق ريبي في التدريب.أخذ عينات من غير لائق للمتغيرات الكامنة عليق النماذج من بناء مساحة كامنة بتعديل.نتيجة لذلك، تتوقف النماذج عن التعامل مع عدم اليقين في المحادثات.لحل ذلك، نقترح أخذ العينات المضاربة للمتغيرات الكامنة.تختار طريقتنا الأكثر احتمالا من متغيرات كامنة العينات بشكل زمني لربط المتغير مع استجابة معينة.نحن نؤكد فعالية طريقتنا في توليد الاستجابة مع بيانات حوار هائلة مصنوعة من مشاركات تويتر.
أصبحت السيارات التلقائية النصية النصية (VAES) سيئة السمعة بالنسبة للانهيار الخلفي، وهي ظاهرة حيث يتعلم وحدة فك ترميز النموذج أن تجاهل الإشارات من التشفير.نظرا لأنه من المعروف أن الانهيار الخلفي يتم تفاقمه من خلال أجهزة فك ترميز التعبير، فقد شهدت المح ولات اعتمادا محدودا كمكون مكونات في VAES النصية.الدراسات القائمة التي تضم المحولات في مبيعات النصوص (لي وآخرون، 2020؛ فانغ وآخرون.، 2021) تخفيف الانهيار الخلفي باستخدام محاولات ضخمة، وهي تقنية غير متوفرة لمعظم مجتمع البحث دون موارد حوسبة واسعة النطاق.نقدم خطة تدريبية بسيطة من مرحلتين لتحويل محول تسلسل إلى تسلسل إلى VIE مع Finetuning فقط.النموذج اللغوي الناتج هو تنافسية مع VAES المستندة إلى المحولات بشكل كبير في بعض المقاييس الداخلية مع الوقوع على الآخرين.لتسهيل التدريب، استكشفنا بشكل شامل تأثير تقنيات تخفيف الطيام الخلفي المشترك في الأدب.نطلق سرد كودنا للاستكشاف.
تمثل قدرة تعلم التعلم من تمثيلات الإعجاب خطوة رئيسية لأنظمة NLP القابلة للتفسير حيث تتيح السيطرة على الميزات اللغوية الكامنة.تعتمد معظم الأساليب التي يتعرض لها DEVENTANGLEMELLEMES على المتغيرات المستمرة، سواء بالنسبة للصور والنص.نقول أنه على الرغم من أن تكون مناسبا لمجموعات بيانات الصورة، قد لا تكون المتغيرات المستمرة مثالية لميزات نموذجية للبيانات النصية، بسبب حقيقة أن معظم العوامل الإدارية في النص منفصلة منفصلة.نقترح طريقة استنادا عن السيارات التلقائية التي تتميز بها النماذج بمثابة متغيرات منفصلة وتشجع الاستقلال بين المتغيرات لتعلم تمثيلات الإعانات.يتفوق النموذج المقترح على خطوط أساسية مستمرة ومنفصلة حول العديد من المعايير النوعية والكمية لإجراءات DEVENTANGELES وكذلك على تطبيق Text Style Toystream.
تعمل العديد من نماذج NLP على تسلسل الرموز الرموز الفرعية التي تنتجها قواعد التزخم المصنوعة يدويا وخوارزميات التعريفي للكلمة الفرعية.بديل عالمي بسيط هو تمثيل كل نص محوسب كسلسلة من البايتات عبر UTF-8، وضبط الحاجة إلى طبقة تضمين نظرا لأن هناك عدد أقل من أنواع الرمز المميز (256) من الأبعاد.من المستغرب، استبدال طبقة التضمين في كل مكان بتمثيلات ساخنة لكل بايت لا تؤذي الأداء؛تظهر التجارب في الترجمة الآلية بايت إلى بايت من الإنجليزية إلى 10 لغات مختلفة تحسنا ثابتا في بلو، ومستوى الطابع المتنافس وحتى نماذج مستوى الكلمات الفرعية القياسية.يكشف التحقيق الأعمق أن مزيج من نماذج تضمينه مع ترميز مفاتيح المدخلات بمبالغ الرمز إلى التسرب الرمزي، والذي يفيد نماذج بايت إلى بايت بشكل خاص.
في هذه الورقة ندرس لغة Pejorative، موضوعا غير متوقع في اللغويات الحسابية.على عكس النماذج الحالية من اللغة الهجومية وكلاب الكراهية، تظهر لغة Pejorative نفسها في المقام الأول على المستوى المعجمي، وتوضح كلمة تستخدم مع دلالة سلبية، مما يجعلها مختلفة عن ا للغة المسيئة أو الفئات الأخرى التي تمت دراستها.يعتمد Pejorativity أيضا على السياق: يمكن استخدام نفس الكلمة مع أو بدون دلالات Pejorative، وبالتالي فإن الكشف عن Pejorativity هو أساسا مشكلة مماثلة ل Disambiguation Sense Word.نستفيد بين القواميس عبر الإنترنت لبناء معجم متعدد اللغات من شروط Pejorative للغة الإنجليزية والإسبانية والإيطالية والرومانية.كلفنا تحرير مجموعة بيانات من تغريدات المشروح لاستخدام Pejorative.بناء على هذه الموارد، نقدم تحليلا لاستخدام وحدوث كلمات Pejorative في وسائل التواصل الاجتماعي، وتقديم محاولة لإفساد استخدام Pejorative تلقائيا في مجموعة بياناتنا.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا