نقترح طريقة لتقييم جودة النص الذي تم إنشاؤه عن طريق طلب المقيمين لحساب الحقائق، والحساب الدقيقة، واستدعاء، F-Score، ودقة من التهم الخام.نعتقد أن هذا النهج يؤدي إلى هدف أكثر وأسهل لإعادة إنتاج التقييم.نحن نطبق هذا على مهمة تلخيص التقرير الطبي، حيث قياس الجودة الموضوعية والدقة له أهمية قصوى.
We propose a method for evaluating the quality of generated text by asking evaluators to count facts, and computing precision, recall, f-score, and accuracy from the raw counts. We believe this approach leads to a more objective and easier to reproduce evaluation. We apply this to the task of medical report summarisation, where measuring objective quality and accuracy is of paramount importance.
المراجع المستخدمة
https://aclanthology.org/
مجردة ملكية مرغوبة لمتري التقييم المرجعي تقيس جودة محتوى الملخص هو أنه ينبغي أن يقدر مقدار المعلومات التي لدى الملخص مشتركا مع مرجع. لا يتداخل النص التقليدي المقاييس المستندة إلى النص مثل Rouge لتحقيق ذلك لأنهم يقتصرون على مطابقة الرموز، إما متعمدة أ
يتم تلخيص المحادثات الطبية من زيارات المريض بشكل روتيني إلى الملاحظات السريرية لتوثيق الرعاية السريرية.يعد الإبداع التلقائي للملاحظة السريرية أمرا صعبا بشكل خاص بالنظر إلى أنه يتطلب التلخصات على اللغة المنطوقة وتحويلات المتكلم المتعددة؛كذلك، تشمل الم
نظم توليد النص في كل مكان في تطبيقات معالجة اللغة الطبيعية.ومع ذلك، فإن تقييم هذه النظم يظل تحديا، خاصة في إعدادات متعددة اللغات.في هذه الورقة، نقترح L'Ambre - مقياس قياسي لتقييم صورة نصية مورفوسنكتاسية من النص باستخدام تحليل التبعية والقواعد المورفو
تم تلخيص الاستخراج هو الدعامة الرئيسية للتلخيص التلقائي لعدة عقود. على الرغم من كل التقدم المحرز، ما زالت الملخصات الاستخراجية تعاني من أوجه القصور بما في ذلك مشاكل Aquerence الناشئة عن استخراج الجمل بعيدا عن سياقها الأصلي في المستند المصدر. هذا يؤثر
يقدم هذا البحث دراسة مرجعية عن الخوارزميات و الأنظمة المتوفرة لكشف الانتحال ، و يقوم بتصميم و بناء تطبيق لكشف الانتحال في الأبحاث الطبية بتوظيف الأنطولوجيات الطبية العالمية المتوفرة على الشبكة العنكبوتية .
إن مسألة كشف الانتحال في الأبحاث الطبية الم