ترغب بنشر مسار تعليمي؟ اضغط هنا

عدم الإبلاغ عن الأخطاء في إخراج NLG، وماذا تفعل حيال ذلك

Underreporting of errors in NLG output, and what to do about it

327   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

نحن نلاحظ قصر الإبلاغ الشديد من أنواع مختلفة من الأخطاء التي تصنعها أنظمة توليد اللغة الطبيعية.هذه مشكلة، لأن الأخطاء هي مؤشر مهم على حيث يجب تحسين الأنظمة.إذا أبلغ المؤلفون فقط إبلاغ مقاييس الأداء الإجمالية، فقد ترك مجتمع البحث في الظلام حول نقاط الضعف المحددة التي تعرضها أبحاث أحدث ".بجانب تحديد مدى اختلال الأخطاء، توفر ورقة الموضع هذه توصيات لتحديد الأخطاء والتحليل والإبلاغ.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

جزء أساسي من حركة الأخلاقيات NLP هو استخدام البيانات المسؤولة عن البيانات، ولكن بالضبط ما يعنيه ذلك أو كيف يمكن تحقيقه بشكل أفضل لا يزال غير واضح.تناقش ورقة الموضع هذه المبادئ القانونية والأخلاقية الأساسية لجمع البيانات النصية ومشاركتها، والتوترات بي نهما.نقترح قائمة مرجعية محتملة لاستخدام البيانات المسؤولة (إعادة) والتي يمكن أن توحيد مراجعة النظراء لتقديمات المؤتمرات، وكذلك تمكين رؤية أكثر متعمقة للبحث المنشور في جميع أنحاء المجتمع.تهدف اقتراحنا إلى المساهمة في تطوير معيار متسق لاستخدام البيانات (إعادة)، واحتضنت مؤتمرات NLP.
الحس السليم هو جزء لا يتجزأ من الإدراك البشري الذي يسمح لنا بإجراء قرارات سليمة، والتواصل بفعالية مع الآخرين وتفسير المواقف والكلام. قد تساعدنا أنظمة AI مع إمكانيات المعرفة المنطقية على الاقتراب من إنشاء أنظمة تعرض ذكاء بشري. ركزت الجهود الأخيرة في ت وليد اللغة الطبيعية (NLG) على دمج معرفة المنظمات من خلال نماذج لغوية مدربة مسبقا واسعة النطاق أو بإدماج قواعد المعرفة الخارجية. تعرض هذه الأنظمة إمكانيات التفكير دون الشعور بالشمول المشفرة بشكل صريح في مجموعة التدريب. تتطلب هذه الأنظمة تقييم دقيق، حيث تقوم بدمج موارد إضافية أثناء التدريب التي تضيف مصادر إضافية للأخطاء. بالإضافة إلى ذلك، يمكن أن يكون للتقييم البشري لمثل هذه الأنظمة اختلافا كبيرا، مما يجعل من المستحيل مقارنة الأنظمة المختلفة وتحديد الأساس. تهدف هذه الورقة إلى إزالة الغموض عن التقييمات الإنسانية لأنظمة NLG المعززة بالعموم من خلال اقتراح بطاقة تقييم العمولة (CEC)، وهي مجموعة من توصيات تقارير التقييم لأنظمة NLG المعززة بالعموم، التي أجرتها تحليل شامل للتقييمات البشرية المبلغ عنها في الأدب الأخير وبعد
تميل نماذج التعليم العميق لمهام توليد اللغة إلى إنتاج إخراج متكرر.تم اقتراح طرق مختلفة لتشجيع التنوع المعجمي أثناء فك التشفير، ولكن هذا غالبا ما يأتي بتكلفة إلى الطلاقة المتصورة وكفاية الإنتاج.في هذا العمل، نقترح قم بتحسين هذه التكلفة باستخدام نهج تع ليمي تقليد لاستكشاف مستوى التنوع الذي يمكن أن ينتج عنه نموذج توليد اللغة بشكل موثوق.على وجه التحديد، نزيد عملية فك التشفير مع تصنيف META مدربين على التمييز بين الكلمات الموجودة في أي وقت معينة ستؤدي إلى إخراج عالية الجودة.نحن نركز تجاربنا على جيل المفاهيم إلى النص حيث تكون النماذج حساسة لإدراج الكلمات غير ذات الصلة بسبب العلاقة الصارمة بين المدخلات والإخراج.يوضح تحليلنا أن الأساليب السابقة للتنوع غير الأدبي في هذا الإعداد، في حين أن التقييم البشري يشير إلى أن طريقةنا المقترحة تحقق مستوى عال من التنوع مع الحد الأدنى من التأثير على طلاقة الإخراج والفوضي.
تركز العديد من مهام NLG مثل التلخيص أو استجابة الحوار أو سؤال المجال المفتوح، والتركيز بشكل أساسي في نص مصدر من أجل توليد استجابة مستهدفة.ومع ذلك، يقع هذا النهج القياسي، عندما يكون نية المستخدم أو سياق العمل غير قابل للاسترداد بسهولة بناء على النص ال مصدر هذا فقط - سيناريو الذي نقوله هو أكثر من القاعدة من الاستثناء.في هذا العمل، نجرب أن أنظمة NLG بشكل عام يجب أن تضع مستوى أعلى بكثير من التركيز على استخدام سياق إضافي، وتشير إلى أن الأهمية (كما هو مستخدم باسترجاع المعلومات) تعتبر كأداة حاسمة لتصميم النص الموجه للمستخدمالمهام - المهام.ونحن نناقش كذلك الأضرار والمخاطر المحتملة حول هذه التخصيص، وتجادل أن التصميم الحساس في القيمة يمثل طريقا حاسما للأمام من خلال هذه التحديات.
تصف هذه الورقة محاولة لإعادة إنتاج تجربة سابقة، التي أجرتها سابقا من قبل المؤلف، والتي تقارن نصوص NLG التحوط وغير المتحركة كجزء من التحدي المشترك المتصنع.كان جهد الاستنساخ هذا قادرا فقط على تكرار النتائج جزئيا من الدراسة الأصلية.يقترح المحللون من جهد الاستنساخ هذا أنهما من الممكن تكرار الجوانب الإجرائية لدراسة سابقة، يمكن تكرار النتائج أن تكون أكثر تحديا لأن الاختلافات في نوع المشارك يمكن أن يكون لها تأثير محتمل.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا