تميل نماذج التعليم العميق لمهام توليد اللغة إلى إنتاج إخراج متكرر.تم اقتراح طرق مختلفة لتشجيع التنوع المعجمي أثناء فك التشفير، ولكن هذا غالبا ما يأتي بتكلفة إلى الطلاقة المتصورة وكفاية الإنتاج.في هذا العمل، نقترح قم بتحسين هذه التكلفة باستخدام نهج تعليمي تقليد لاستكشاف مستوى التنوع الذي يمكن أن ينتج عنه نموذج توليد اللغة بشكل موثوق.على وجه التحديد، نزيد عملية فك التشفير مع تصنيف META مدربين على التمييز بين الكلمات الموجودة في أي وقت معينة ستؤدي إلى إخراج عالية الجودة.نحن نركز تجاربنا على جيل المفاهيم إلى النص حيث تكون النماذج حساسة لإدراج الكلمات غير ذات الصلة بسبب العلاقة الصارمة بين المدخلات والإخراج.يوضح تحليلنا أن الأساليب السابقة للتنوع غير الأدبي في هذا الإعداد، في حين أن التقييم البشري يشير إلى أن طريقةنا المقترحة تحقق مستوى عال من التنوع مع الحد الأدنى من التأثير على طلاقة الإخراج والفوضي.
Deep-learning models for language generation tasks tend to produce repetitive output. Various methods have been proposed to encourage lexical diversity during decoding, but this often comes at a cost to the perceived fluency and adequacy of the output. In this work, we propose to ameliorate this cost by using an Imitation Learning approach to explore the level of diversity that a language generation model can reliably produce. Specifically, we augment the decoding process with a meta-classifier trained to distinguish which words at any given timestep will lead to high-quality output. We focus our experiments on concept-to-text generation where models are sensitive to the inclusion of irrelevant words due to the strict relation between input and output. Our analysis shows that previous methods for diversity underperform in this setting, while human evaluation suggests that our proposed method achieves a high level of diversity with minimal effect on the output's fluency and adequacy.
المراجع المستخدمة
https://aclanthology.org/
في التسمية التوضيحية للصورة، غالبا ما يتم توفير التسميات التوضيحية المتعددة كحقائق أرضية، لأن التسمية التوضيحية الصالحة ليست مصممة بشكل فريد.الأساليب التقليدية حدد بشكل عشوائي توضيحية واحدة وتعاملها على أنها صحيحة، ولكن كانت هناك عدد قليل من طرق التد
تمت دراسة AcoNecoders Varitional كهدوء واعد لنموذج تعيينات واحدة إلى العديد من السياق للاستجابة في توليد استجابة الدردشة.ومع ذلك، غالبا ما تفشل في تعلم التعيينات المناسبة.أحد أسباب هذا الفشل هو التناقض بين الاستجابة وأخذ عينات متغير كامنة من توزيع تق
تكتسب نماذج اللغة المحددة مسبقا بسرعة شعبية بسرعة في أنظمة NLP للغات غير الإنجليزية.تتميز معظم هذه النماذج بخطوة أخذ عينات مهمة مهمة في عملية تتراكم بيانات التدريب بلغات مختلفة، للتأكد من أن الإشارة من لغات الموارد الأفضل لا تغرق منها أكثر الموارد.في
في معظم سيناريوهات جهاز التقطير أو سرقة الترجمة الآلية العصبية، يتم استخدام فرضية التسجيل أعلى النموذج المستهدف (المعلم) لتدريب نموذج جديد (طالب).إذا كانت الترجمات المرجعية متاحة أيضا، فيمكن إظهار الفرضيات الأفضل (فيما يتعلق بالمراجع) وفرضيات فقراء إ
إن محول نقل النص إلى النص الأخير "'(T5) عند الاستفادة من تنسيق نصي إلى نص موحد ومقياس لتحقيق النتائج الحديثة على مجموعة واسعة من مهام NLP باللغة الإنجليزية.في هذه الورقة، نقدم MT5، وهو متغير متعدد اللغات من T5 الذي تم تدريبه مسبقا على مجموعة بيانات ج