تلقى الاعتراف بالمحادثة في المحادثة اهتماما كبيرا مؤخرا بسبب تطبيقاتها الصناعية العملية.تميل الأساليب الحالية إلى التغاضي عن التفاعل المتبادل الفوري بين مكبرات الصوت المختلفة في مستوى الكلام المتكلم، أو قم بتطبيق RNN المتكلم المرغوب عن الكلام من مختلف المتحدثين.نقترح عملة معدنية، نموذج تفاعلي محادثة لتخفيف هذه المشكلة عن طريق تطبيق التفاعل المتبادل الحكومي في سياقات التاريخ.بالإضافة إلى ذلك، نقدم وحدة تفاعلية عالمية مكدسة لالتقاط تمثيل السياق والاعتماد بين الاعتمادات بطريقة هرمية.لتحسين المتانة والتعميم أثناء التدريب، نقوم بإنشاء أمثلة خصومة من خلال تطبيق الاضطرابات البسيطة بشأن مدخلات ميزة متعددة الوسائط، كشف النقاب عن فوائد الأمثلة العداء للكشف عن المشاعر.ينص النموذج المقترح بشكل تجريبي النتائج الحالية على النتائج الحالية على مجموعة بيانات IEMOCAP Benchmark.
Emotion recognition in conversation has received considerable attention recently because of its practical industrial applications. Existing methods tend to overlook the immediate mutual interaction between different speakers in the speaker-utterance level, or apply single speaker-agnostic RNN for utterances from different speakers. We propose COIN, a conversational interactive model to mitigate this problem by applying state mutual interaction within history contexts. In addition, we introduce a stacked global interaction module to capture the contextual and inter-dependency representation in a hierarchical manner. To improve the robustness and generalization during training, we generate adversarial examples by applying the minor perturbations on multimodal feature inputs, unveiling the benefits of adversarial examples for emotion detection. The proposed model empirically achieves the current state-of-the-art results on the IEMOCAP benchmark dataset.
المراجع المستخدمة
https://aclanthology.org/
تم إجراء عدة دراسات حديثة حول التفاعلات البشرية الدينية على المحادثات دون أهداف تجارية محددة. ومع ذلك، قد تستفيد العديد من الشركات من الدراسات المخصصة لبيئات أكثر دقة مثل خدمات ما بعد البيع أو استطلاعات رضا العملاء. في هذا العمل، نضع أنفسنا في نطاق خ
أصبح التعرف على العاطفة في محادثة متعددة الأحزاب (ermc) شعبية بشكل متزايد كقاعدة بحثية ناشئة في معالجة اللغة الطبيعية.يركز البحث المسبق على استكشاف معلومات متتابعة ولكن يتجاهل هياكل المحادثات.في هذه الورقة، يمكننا التحقيق في أهمية هياكل الخطاب في الت
يعمل المصنف الموجود في مهام الحوسبة العاطفية متعددة الوسائط، مثل التعرف على العاطفة والتعرف على الشخصية، عموما خط أنابيب ذات مرحلتين من خلال أول استخراج تمثيلات ميزة لكل طريقة واحدة مع الخوارزميات المصنوعة يدويا، ثم أداء التعلم المنتهي مع الميزات الم
تعتبر التعرف على عاطلة المحادثة (CER) مهمة للتنبؤ بمشاعر الكلام في سياق محادثة. على الرغم من أن نمذجة سياق المحادثة والتفاعلات بين المتحدثين قد درست على نطاق واسع، إلا أنه من المهم النظر في الدولة النفسية للمتحدث، والتي تسيطر على عمل ومكبر الصوت. تقد
بسبب شعبية خدمات مساعد الحوار الذكي، أصبح التعرف على عاطفي الكلام أكثر وأكثر أهمية.في التواصل بين البشر والآلات، يمكن للتعرف على العاطفة وتحليل العاطفة تعزيز التفاعل بين الآلات والبشر.تستخدم هذه الدراسة نموذج CNN + LSTM لتنفيذ معالجة العاطفة الكلام (