تقدم هذه الورقة مجموعة بيانات مسؤولة متعددة الخيارات متعددة المدى (QA)، بناء على نصوص كتاب الخيال الكامل الطول. يتم صياغة الأسئلة كأسئلة متعددة الخيارات ذات 10 اتجاهين، حيث تتمثل المهمة في تحديد اسم الحرف الصحيح مع إعطاء وصف حرفي أو نائبا للعكس. يتم صياغة كل وصف حرف في النص الطبيعي وغالبا ما يحتوي على معلومات من عدة أقسام في جميع أنحاء الكتاب. نحن نقدم 20،000 سؤال تم إنشاؤه من 10،000 أوصاف مشروح يدويا من الشخصيات من 177 كتابا تحتوي على 152،917 كلمة في المتوسط. نحن نتطلع إلى الخطاب الحالي فيما يتعلق بتحيز DataSet والتسرب بواسطة إجراء مجهول بسيط، مما يتيح بدوره إمكانيات التحقيق المثيرة للاهتمام. أخيرا، نظهر أن خوارزميات الأساس المناسبة تؤدي بشكل سيء للغاية في هذه المهمة، مع حجم الكتاب نفسه مما يجعله غير تافهة لمحاولة حل ضمان الجودة القائم على المحولات. هذا يترك مجالا واسعا للتحسين في المستقبل، وتلميحات في الحاجة إلى نوع مختلف تماما من الحل.
This paper introduces a long-range multiple-choice Question Answering (QA) dataset, based on full-length fiction book texts. The questions are formulated as 10-way multiple-choice questions, where the task is to select the correct character name given a character description, or vice-versa. Each character description is formulated in natural text and often contains information from several sections throughout the book. We provide 20,000 questions created from 10,000 manually annotated descriptions of characters from 177 books containing 152,917 words on average. We address the current discourse regarding dataset bias and leakage by a simple anonymization procedure, which in turn enables interesting probing possibilities. Finally, we show that suitable baseline algorithms perform very poorly on this task, with the book size itself making it non-trivial to attempt a Transformer-based QA solution. This leaves ample room for future improvement, and hints at the need for a completely different type of solution.
المراجع المستخدمة
https://aclanthology.org/
نقدم المهمة الجديدة لحل النزاعات اسم النطاق (DNDR)، والذي يتنبأ بنتيجة عملية لحل النزاعات حول استحقاق قانوني لاسم النطاق.يحدد TheICann UDRP عملية تحكيم إلزامية للنزاع بين مالك العلامة التجارية وسجل اسم النطاق المتعلق باسم مجال كبير المستوى (GTLD) (GT
نقترح codeqa، وهو سؤالا حرة يرد على مجموعة البيانات لغرض فهم التعليمات البرمجية المصدر: إعطاء مقتطف رمز وسؤال، مطلوب إجابة نصية أن يتم إنشاؤها.يحتوي Codeqa على مجموعة بيانات Java مع 119،778 أزواج من الإجابات السؤال ومجموعة بيانات بيثون مع 70،085 زوجا
يقدم هذا البحث عرضاً لمفهوم الشخصية بوصفها عنصرا فنياً أساسياً في بناء الرواية
وفق المفاهيم البنيوية.
ثم يقدم تحليلاً للشخصيات في رواية (المخطوفون) ل (عبد الكريم ناصيف) مستعرضاً
الطريقة التي اتبعها الكاتب لبناء الشخصيات، و دورها، و دلالة تسمياتها.
تم إنشاء العديد من مجموعات البيانات لتدريب نماذج الفهم في القراءة، والسؤال الطبيعي هو ما إذا كان يمكننا دمجها لبناء النماذج التي (1) أداء أفضل على جميع مجموعات بيانات التدريب و (2) تعميم وتحويل أفضل بيانات جديدة إلى مجموعات البيانات الجديدة. عالج الع
عادة ما تعتبر التشفير العصبي للأسماء الطبية الحيوية قوية إذا تم استغلال التمثيلات بشكل فعال لمختلف مهام NLP المصب المختلفة. لتحقيق ذلك، تحتاج المشفر إلى نموذج الدلالات الطبية الحيوية خاصة بالمجال مع تنافس التطبيق العالمي للتطبيق العالمي للإشراف على ا