الأساليب القائمة على المحولات جذابة لتصنيف النص متعدد اللغات، ولكن معايير البحوث الشائعة مثل XNLI (Conneau et al.، 2018) لا تعكس توافر البيانات ومجموعة واسعة من تطبيقات الصناعة.نقدم مقارنة تجريبية من نماذج تصنيف النص المستند إلى المحولات في مجموعة متنوعة من إعدادات الاحتياطية وغير اللغوية المتعددة اللغات والضبط.نقيم هذه الأساليب على مهمتين متميزتين في خمس لغات مختلفة.المغادرة من العمل السابق، تظهر نتائجنا أن نماذج لغة متعددة اللغات يمكن أن تتفوق على تلك المهام المطردة في بعض المهام المصب واللغات المستهدفة.نوضح بالإضافة إلى ذلك أن التعديلات العملية مثل المهام وعمالة العمل التكيفية والتكييف يمكن أن تحسن أداء التصنيف دون الحاجة إلى بيانات إضافية إضافية.
Transformer-based methods are appealing for multilingual text classification, but common research benchmarks like XNLI (Conneau et al., 2018) do not reflect the data availability and task variety of industry applications. We present an empirical comparison of transformer-based text classification models in a variety of practical monolingual and multilingual pretraining and fine-tuning settings. We evaluate these methods on two distinct tasks in five different languages. Departing from prior work, our results show that multilingual language models can outperform monolingual ones in some downstream tasks and target languages. We additionally show that practical modifications such as task- and domain-adaptive pretraining and data augmentation can improve classification performance without the need for additional labeled data.
المراجع المستخدمة
https://aclanthology.org/
الهند هي واحدة من أغنى مراكز اللغات على الأرض وهي متنوعة للغاية وتعدد اللغات. ولكن بصرف النظر عن عدد قليل من اللغات الهندية، ما زال معظمهم يعتبرون فقراء الموارد. نظرا لأن معظم تقنيات NLP تتطلب معرفة لغوية لا يمكن تطويرها إلا من قبل الخبراء والمتحدثين
إن محول نقل النص إلى النص الأخير "'(T5) عند الاستفادة من تنسيق نصي إلى نص موحد ومقياس لتحقيق النتائج الحديثة على مجموعة واسعة من مهام NLP باللغة الإنجليزية.في هذه الورقة، نقدم MT5، وهو متغير متعدد اللغات من T5 الذي تم تدريبه مسبقا على مجموعة بيانات ج
تعدد اللغات T5 Pretrains نموذج تسلسل إلى تسلسل على نصوص أحادية الأبعاد ضخمة، والتي أظهرت نتائج واعدة على العديد من المهام المتبقية اللغوية.في هذه الورقة، نحسن محول نقل النص إلى النص متعدد اللغات مع أزواج الترجمة (MT6).على وجه التحديد، نستكشف ثلاثة مه
تحديد ما إذا كانت الكلمة تحمل نفس المعنى أو المعنى المختلف في سياقتين هي منطقة بحثية مهمة في معالجة اللغة الطبيعية تلعب دورا مهما في العديد من التطبيقات مثل الإجابة على الأسئلة، وملخص الوثائق، واسترجاع المعلومات واستخراج المعلومات واستخراج المعلومات.
تلقت تصنيف النص الإشراف ضعيف اهتماما كبيرا في السنوات الأخيرة لأنه يمكن أن يخفف من العبء الثقيل في التخلص من البيانات الضخمة. من بينها، الأساليب التي يحركها الكلمات الرئيسية هي السائدة حيث يتم استغلال الكلمات الرئيسية التي توفرها المستخدم لتوليد ملصق