ترغب بنشر مسار تعليمي؟ اضغط هنا

نماذج اخفاء ومحول للكشف عن ارتفاع ضغط الدم في الأخبار

Masking and Transformer-based Models for Hyperpartisanship Detection in News

213   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

تظهر أخبار Hyperpartisan التلاعب الشديد بالحقيقة بناء على اتجاه أيديولوجي أساسي ومحد للغاية. نظرا لآثارها الضارة في تعزيز تحيز الفرد والسلوك الخلفي للأشخاص، أصبح الكشف عن الأخبار Hyperpartisan مهمة مهمة بالنسبة لغوياء الحساسين. في هذه الورقة، نقوم بتقييم طريقتين مختلفتين للكشف عن أخبار فرط الاسباريسان. أولا، تقنية إخفاء نصية تسمح لنا بمقارنة الميزات المتعلقة بالموضوعات ذات الصلة بالموضوع في منظور مختلف عن العمل السابق. ثانيا، نماذج المحولات التي تعتمد على المحولات، XLM-roberta، و m-bert، المعروف بقدرتها على التقاط أنماط دلالية ونقص في نفس التمثيل. تؤكد نتائجنا البحث السابق في هذه المهمة في هذه الميزات المتعلقة بالموضوعات التي تسفر عن نتائج أفضل من تلك القائمة على النمط، على الرغم من أنها تسليط الضوء أيضا على أهمية استخدام N-WIND أعلى N-Grams. علاوة على ذلك، فإنها تظهر أن النماذج القائمة على المحولات هي أكثر فعالية من الأساليب التقليدية، ولكن هذا بتكلفة تعقيد حسابي أكبر وعدم الشفافية. استنادا إلى تجاربنا، نستنتج أن بداية الأخبار تظهر المعلومات ذات الصلة للمحولات في التمييز بفعالية بين الاتجاهات اليسارية والسائدة واليمين.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

تعتبر البيانات التي يتم إساءة فهمها عن قصد (أو التلاعب) باهتمام كبير للباحثين والحكومة والأمن والنظم المالية. وفقا لأدب الخداع، هناك إشارات موثوقة للكشف عن الخداع والاعتقاد بأن الكذابين يعطون العظة التي قد تشير إلى أن خداعها قريب عالمي. لذلك، بالنظر إلى أن الإجراءات الخادعة تتطلب التطور المعرفي المتقدمة التي لا تتطلب الصدق ببساطة، وكذلك الآليات المعرفية للناس توجيهات واعدة للكشف عن الخداع، في هذه الدكتوراه. البحث المستمر، نقترح فحص أنماط هيكل الخطاب في كورسيا الأخبار الخادعة متعددة اللغات باستخدام إطار نظرية الهيكل البوليكي. بالنظر إلى أن عملنا هو أول من استغلال استراتيجيات إعلانات متعددة اللغات للكشف عن الأخبار المزيفة، يفتقر مجتمع البحث حاليا إلى كورسا المزدحمة الخادعة متعددة اللغات. تبعا لذلك، تصف هذه الورقة التقدم الحالي في هذه الأطروحة، بما في ذلك (1) بناء أول لجنة خادعة متعددة اللغات، مشروح من قبل المتخصصين وفقا لإطار نظرية الهيكل البوليكي، و (2) إدخال اثنين من علاقات بلاطية جديدة : التدخل والحتمية، التي نفترض أن نكون ذات صلة بمهمة الكشف عن الأخبار المزيفة.
مشكلة الكشف عن الإجهاد النفسي في الوظائف عبر الإنترنت، وعلى نطاق أوسع، من اكتشاف الناس في محنة أو في حاجة إلى مساعدة، هو تطبيق حساس له القدرة على تفسير النماذج أمر حيوي.هنا، نقدم العمل في استكشاف استخدام مهمة ذات صلة من الناحية الدلوية، والكشف عن الم شاعر، من أجل الكشف عن الإجهاد النفسي غير المختص به بنفس القدر ولكن أكثر قابلية للتفسير ومقارنة مع نموذج الصندوق الأسود.على وجه الخصوص، نستكشف استخدام التعلم متعدد المهام وكذلك طراز اللغة القائمة على العاطفة.مع نماذجنا المخفوعة العاطفة، نرى نتائج مماثلة لتحقيق أحدث بيرت.تبين تحليلنا للكلمات المستخدمة للتنبؤ أن نماذجنا المشنقة لدينا مرآة مكونات نفسية من الإجهاد.
نقدم طريقة بسيطة لتوسيع المحولات إلى الأشجار من جانب المصدر.نحن نحدد عددا من الأقنعة التي تحد من اهتمام الذات بناء على العلاقات بين العقد الشجرة، ونحن نسمح لكل انتباه في أن يتعلم أي قناع أو أقنعة لاستخدامها.عند الترجمة من الإنجليزية إلى العديد من لغا ت الموارد المنخفضة، والترجمة في كلا الاتجاهين بين اللغة الإنجليزية والألمانية، تعمل طريقتنا دائما على التحليل البسيط لمجموعة تحليل جانب المصدر ويحسن دائما تقريبا على خط أساس تسلسل إلى تسلسل، حسب ما يصلإلى +2.1 بلو.
يشكل التعميم الشامل مسألة مهمة للكشف عن الموقف (SD).في هذه الورقة القصيرة، نقوم بالتحقيق في SD الصلبة العدسة، حيث يتم الاستفادة من المعرفة من البيانات التي تم إنشاؤها من قبل المستخدم لتحسين الأخبار SD على أهداف غير مرئية أثناء التدريب.نقوم بتنفيذ شبك ة مخدرة قائمة على Bert وتظهر تحسينات الأداء التجريبية على مجموعة من خطوط الأساس القوية.بالنظر إلى وفرة البيانات التي تم إنشاؤها من قبل المستخدم، والتي تكون أقل تكلفة بكثير لاسترداد وتعليقها من المقالات الإخبارية، فإن هذا يشكل اتجاها بحثا واعدا.
يشكل الاستخدام الواسع للإنترنت والنشر السريع للمعلومات التحدي المتمثل في تحديد صحة محتواه. اكتشف الكشف عن الموقف، الذي تعد مهمة التنبؤ بموقف نص فيما يتعلق بهدف محدد (سؤال المطالبة أو النقاش)، لتحديد صحة المعلومات في مهام مثل تصنيف الشائعات والكشف عن الأخبار المزيفة. في حين أن معظم الأعمال ومجموعات البيانات المتاحة للكشف عن الموقف يعالج النصوص القصيرة مقتطفات مستخرجة من الحوارات النصية، أو منصات وسائل التواصل الاجتماعي، أو عناوين الأخبار مع التركيز القوي على اللغة الإنجليزية، فهناك نقص في الموارد المستهدفة للنصوص الطويلة بلغات أخرى. مساهمتنا في هذه الورقة هي ذات شقين. أولا، نقدم مجموعة بيانات ألمانية من أسئلة النقاش والمقالات الإخبارية التي يتم تفاحها يدويا للكشف عن الموقف والعاطفة. ثانيا، نستفيد من مجموعة البيانات لمعالجة المهمة الخاضعة للإشراف على تصنيف موقف مقال إخباري فيما يتعلق بمسألة النقاش وتوفير نماذج خط الأساس كمرجع للعمل في المستقبل بشأن اكتشاف الموقف في المقالات الإخبارية الألمانية.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا