ترغب بنشر مسار تعليمي؟ اضغط هنا

الاعتماد على تحليل الخطاب للإجابة على أسئلة معقدة من خلال الفهم القراءة الآلة العصبية

Relying on Discourse Analysis to Answer Complex Questions by Neural Machine Reading Comprehension

313   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

آلة قراءة الآلة (MRC) هي واحدة من أكثر المهام تحديا في مجال معالجة اللغة الطبيعية. تم تحقيق نتائج أحدث حديثة ل MRC بنماذج اللغة المدربة مسبقا، مثل بيرت وتعديلاتها. على الرغم من ارتفاع الأداء لهذه النماذج، إلا أنهم لا يزالون يعانون من عدم القدرة على استرداد الإجابات الصحيحة من الممرات التفصيلية الطويلة. في هذا العمل، نقدم مخططا جديدا لإدماج هيكل الخطاب للنص في شبكة انتباهي، وبالتالي إثراء التضمين الذي تم الحصول عليه من ترميز بيرت القياسي مع المعرفة اللغوية الإضافية. نحقق أيضا في تأثير أنواع مختلفة من المعلومات اللغوية عن قدرة النموذج على الإجابة على الأسئلة المعقدة التي تتطلب فهم عميق للنص بأكمله. أظهرت التجارب التي تم إجراؤها على مرجع الفريق وأكثر تعقيدا عن مجموعات بيانات الأجابة أن المعزز اللغوي يعزز أداء نموذج بيرت القياسي بشكل كبير.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

لقد أثبتت تدريب الخصم (AT) كطريقة تنظيمي فعاليتها على المهام المختلفة.على الرغم من وجود تطبيقات ناجحة في بعض مهام NLP، إلا أن الخصائص المميزة لمهام NLP لم يتم استغلالها.في هذه الورقة، نهدف إلى تطبيق مهام فهم القراءة (MRC).علاوة على ذلك، فإننا نتكيف م ع مهام MRC من خلال اقتراح طريقة تدريبية عديدة جديدة تسمى PQAT التي تتعلق بمصفوفة التضمين بدلا من ناقلات Word.للتمييز بين أدوار الممرات والأسئلة، يستخدم PQAT مصفوفات إضافية P / Q Directding إضافية لجمع الاضطرابات العالمية للكلمات من الممرات والأسئلة بشكل منفصل.نحن نختبر الطريقة على مجموعة واسعة من مهام MRC، بما في ذلك RC الاستخراجية المستندة إلى RC واستخراج RC متعددة الخيارات.تظهر النتائج أن التدريب الخصم فعال عالميا، ويحسن PQAT الأداء.
آلة القراءة الفهم هي مهمة صعبة خاصة للاستعلام عن المستندات ذات السياقات العميقة والترابطية.أظهرت الطرق المستندة إلى المحولات عروضا متقدمة في هذه المهمة؛ومع ذلك، فإن معظمهم لا يزال يعاملون المستندات كمتسلسلة مسطحة من الرموز.يقترح هذا العمل طريقة جديدة قائمة على المحولات التي تقرأ مستند كشرائح شجرة.يحتوي على وحديتين لتحديد المزيد من مقاطع النص ذات الصلة وأفضل إجابة سبان على التوالي، والتي لا يتم تدريبها بشكل مشترك فقط ولكن أيضا تشاور بشكل مشترك في وقت الاستدلال.تظهر نتائج تقييمنا أن أسلوبنا المقترح تتفوق على العديد من النهج الأساسية التنافسية على مجموعة بيانات من مجالات متنوعة.
آلة قراءة الآلة (MRC)، والتي تتطلب آلة للإجابة على الأسئلة التي تعطى المستندات ذات الصلة، هي طريقة مهمة لاختبار قدرة الآلات على فهم اللغة البشرية.تعد MRC متعددة الخيارات واحدة من أكثر المهام التي تمت دراستها في MRC نظرا لراحة التقييم ومرونة تنسيق الإ جابة.تهدف تفسير ما بعد الهوك إلى شرح نموذج مدرب ويكشف عن كيفية وصول النموذج إلى التنبؤ.واحدة من أهم أشكال التفسير هي أن نسأل قرارات النموذج إلى ميزات المدخلات.بناء على طرق الترجمة الفورية لما بعد الهوك، نقوم بتقييم دعاسة الفقرات في MRC متعددة الخيارات وتحسين النموذج من خلال معاقبة السموم غير المنطقية.يمكن لطريقتنا تحسين أداء النموذج دون أي معلومات خارجية وتغيير هيكل النموذج.علاوة على ذلك، فإننا نحلل أيضا كيف ولماذا تعمل طريقة التدريب الذاتي.
تتمثل المحور الخاص بتحليل المعنويات المستندة إلى جانب الجانب (ABAMA) على إزاحة شروط الجانب مع شروط الرأي المقابلة، والتي قد تستمد تنبؤات المعنويات أسهل. في هذه الورقة، نحقق في مهمة ABSA الموحدة من منظور فهم القراءة بالآلة (MRC) من خلال مراعاة أن الجا نب وشروط الرأي يمكن أن يكون بمثابة الاستعلام والإجابة في MRC Interchangeably. نقترح نماذج جديدة تسمى دور يقرأ آلة القراءة (RF-MRC) لحلها. في قلبها، تعتبر النتائج المتوقعة إما استخراج الأوجه (أكلت) أو مصطلحات الرأي (OTE) الاستعلامات، على التوالي، وتعتبر الرأي المتطابق أو شروط الجانب إجابات. يمكن انقلاب الاستفسارات والإجابات للكشف المتعدد القفز. أخيرا، يتم توقع كل زوج من جانب الرأي المتطابق مع مصنف المعنويات. RF-MRC يمكن أن يحل مهمة ABSA دون أي شرح بيانات إضافي أو تحويل. تجارب على ثلاثة معايير مستعملة على نطاق واسع ومجموعة بيانات صعبة توضح تفوق الإطار المقترح.
يشير العمل السابق إلى أن معلومات خطاب المعلومات المتعلقة بالتلخيص.في هذه الورقة، نستكشف ما إذا كان هذا التآزر بين الخطاب والتلخيص ثنائي الاتجاه، من خلال استنتاج أشجار الخطاب على مستوى المستند من الملخصات العصبية المدربة مسبقا.على وجه الخصوص، نولد أشج ار خطاب على الطراز الأول غير المسموح به من مصفوفات الانتباه الذاتي لنموذج المحول.تكشف التجارب عبر النماذج ومجموعات البيانات أن الملخصات تتعلم كل من معلومات الخطاب على حد سواء، والاعتماد على نمط الدوائر الانتخابية، والتي يتم ترميزها عادة في رأس واحد، تغطي تبعيات الخطاب طويلا وقصيرا.بشكل عام، تشير النتائج التجريبية إلى أن معلومات الخطاب المستفادة عامة ومباشرة قابلة للتحويل.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا