في هذه الورقة، نصف مشاركتنا في مهمة تقوية المعقدة المعجمية (LCP) مهمة Semeval 2021، والتي تنطوي على التنبؤ بتصنيفات ذاتية للتعقيد للكلمات الفردية الإنجليزية وتعبيرات متعددة الكلمة، المقدمة في السياق.يعتمد نهجنا على مزيج من النماذج التوزيعية، كل من السياق المعال والسياق المستقل، إلى جانب المعايير السلوكية والموارد المعجمية.
In this paper we describe our participation in the Lexical Complexity Prediction (LCP) shared task of SemEval 2021, which involved predicting subjective ratings of complexity for English single words and multi-word expressions, presented in context. Our approach relies on a combination of distributional models, both context-dependent and context-independent, together with behavioural norms and lexical resources.
المراجع المستخدمة
https://aclanthology.org/
في هذه الورقة، نقدم ثلاثة أنظمة مختلفة للإشراف على تنبؤ التعقيد المعجمي باللغة الإنجليزية للتعبيرات الفردية والمتعددة المهام ل Semeval-2021.الرمز المستهدف في السياق.تجمع أفضل نظامنا بين المعلومات من هذه المصادر الثلاث.تشير النتائج إلى أن المعلومات ال
إن التنبؤ بمستوى تعقيد كلمة أو عبارة تعتبر مهمة صعبة.يتم التعرف عليه حتى كخطوة حاسمة في العديد من تطبيقات NLP، مثل إعادة ترتيب النصوص ومبسط النص.تعامل البحث المبكر المهمة بمثابة مهمة تصنيف ثنائية، حيث توقعت النظم وجود تعقيد كلمة (معقد مقابل غير معقدة
نقدم نهجنا في التنبؤ بالتعقيد المعجمي للكلمات في سياقات محددة، على النحو الذي أدخلته المهمة المشتركة LCP 1 في Semeval 2021. يتكون النهج من الجمل الفاصلة إلى قطع أصغر، وتضمينها مع SENT2VEC، وتقليل المدينات إلى متجه أبسط يستخدم كمدخلإلى شبكة عصبية، هذا
في هذه الورقة، نقدم مساهمتنا في مهمة Semeval-2021 1: تنبؤ التعقيد المعجمي، حيث ندمج الممتلكات اللغوية والإحصائية والدلية للكلمة المستهدفة وسياقها كميزات ضمن إطار تعلم الجهاز (ML) للتنبؤ بالتعقيد المعجميوبعدعلى وجه الخصوص، نستخدم شركة Bert Contentrali
تصف هذه الورقة نظام مقدم من فريق Biggreen إلى LCP 2021 للتنبؤ بالتعقيد المعجمي للكلمات الإنجليزية في سياق معين.نحن نكرب نموذجا يعتمد على الهندسة مع نموذج شبكة عصبي عميق تأسست على بيرتف.بينما ينفذ بيرت نفسها بشكل تنافسي، فإن نموذجنا القائم على الهندسة