ترغب بنشر مسار تعليمي؟ اضغط هنا

عصير التفاح: استنتاج المنطقي لتفسير الحوار والتفكير

CIDER: Commonsense Inference for Dialogue Explanation and Reasoning

664   0   0   0.0 ( 0 )
 تاريخ النشر 2021
  مجال البحث الذكاء الاصناعي
والبحث باللغة English
 تمت اﻹضافة من قبل Shamra Editor




اسأل ChatGPT حول البحث

إن استنتاج المنطقي لفهم وشرح اللغة البشرية هي مشكلة بحثية أساسية في معالجة اللغة الطبيعية. يطرح المشرف على المحادثات الإنسانية تحديا كبيرا لأنه يتطلب التفاهم السياقي والتخطيط والاستدلال والعديد من جوانب المنطق بما في ذلك التفكير السببية والزمان والعموم. في هذا العمل، نقدم عصير التفاح - مجموعة بيانات مفيدة يدويا تحتوي على تفسيرات حوار دولي في شكل ثلاثة توائم في ثلاثة أضعاف تستنتج المعرفة الصريحة باستخدام استنتاج المناشد السياقي. يمكن أن يؤدي استخراج التفسيرات الغنية من المحادثات إلى تحسين العديد من التطبيقات المصب. يتم تصنيف ثلاثة توائم مشروح حسب نوع المعرفة المنطقية الحالية (على سبيل المثال، السببية، الشرطية، الزمنية). لقد أنشأنا ثلاث مهام مختلفة مكيفة على مجموعة البيانات المشروحة: الاستدلال اللغوي الطبيعي على مستوى الحوار، واستخراج تمتد، واختيار سبان متعدد الخيارات. النتائج الأساسية التي تم الحصول عليها مع النماذج القائمة على المحولات تكشف أن المهام صعبة، مما يمهد الطريق للبحث في المستقبل الواعدة. تتوفر DataSet وتطبيقات الأساس علنا ​​في https://github.com/declare-lab/cider.



المراجع المستخدمة
https://aclanthology.org/
قيم البحث

اقرأ أيضاً

يستخدم البشر منطق المنطقي (CSR) ضمنيا لإنتاج ردود طبيعية ومتماسكة في المحادثات. تهدف إلى إغلاق الفجوة بين نماذج جيل الاستجابة الحالية (RG) قدرات الاتصالات البشرية، نريد أن نفهم لماذا تستجيب نماذج RG أثناء قيامهم بتحقيق فهم نموذج RG للمنطق المنطقي الذ ي يثير الاستجابات المناسبة. نحن نقوم بإضفاء الطابع الرسمي على المشكلة عن طريق تأطير العمولة كمتغير كامن في مهمة RG واستخدام توضيحات للاستجابات كأشكال نصية من العمليات النصية. نجمع 6K تفسيرات مشروحة تبرر الردود من أربعة مجموعات من مجموعات بيانات الحوار ونسأل البشر للتحقق منها واقتراح اثنين من إعدادات التحقيق لتقييم قدرات CSR نماذج RG. تظهر النتائج التحقيق أن النماذج تفشل في التقاط العلاقات المنطقية بين تفسيرات والردود المنطقية والضبط بشكل جيد على البيانات داخل المجال والأحجام النموذجية المتزايدة لا تؤدي إلى فهم المسؤولية الاجتماعية للشركات ل RG. نأمل أن تقوم دراستنا بحفز المزيد من الأبحاث في جعل نماذج RG محاكاة عملية التفكير البشرية في السعي لتحقيق اتصال ناعم للإنسان العربي.
تعلم نماذج اللغة المدربة مسبقا تحيزات ضارة اجتماعيا من كورسا التدريب الخاصة بهم، وقد تكرر هذه التحيزات عند استخدامها للجيل.ندرس التحيزات الجنسانية المرتبطة بطل الرواية في القصص الناتجة النموذجية.قد يتم التعبير عن هذه التحيزات إما صراحة (لا تستطيع الم رأة أن تجمع ") أو ضمنيا (على سبيل المثال طابع الذكور غير المرغوب فيه يرشدها إلى مساحة وقوف السيارات).نحن نركز على التحيزات الضمنية واستخدام محرك منطق المنطقي للكشف عنها.على وجه التحديد، نستنتج وتحليل دوافع بطل الرواية، والسمات، والدول الذهنية، والآثار على الآخرين.تتماشى نتائجنا المتعلقة بالتحيزات الضمنية مع العمل المسبق الذي درس تحيزات صريحة، على سبيل المثال إظهار أن تصوير الأحرف الإناث يتركز حول المظهر، بينما تركز أرقام الذكور على الفكر.
أظهرت الأساليب الحديثة بناء على نماذج اللغة المدربين مسبقا أداء مشغل قوي على المنطق المنطقي.ومع ذلك، فإنها تعتمد على شروح بيانات باهظة الثمن والتدريب المستهلكة للوقت.وهكذا، نحن نركز على التفكير المنطقي غير المنشأ.نظهر فعالية استخدام إطار عمل مشترك، ا ستنتاج اللغة الطبيعية (NLI)، لحل مهام المنطق المنطقي متنوعة.من خلال الاستفادة من نقل التحويلات من مجموعات بيانات NLI الكبيرة، وحقن المعرفة الحاسمة من مصادر المنطقية مثل 2020 والفهول الذرية، حققت طريقنا أداء غير مدهز للحالة غير المدرجة في مهمتين منطقتي المنطقية: Winowhy و Commonsenseqa.أظهر إجراء مزيد من التحليل فوائد فئات متعددة من المعرفة، ولكن مشاكل حول الكميات والمتضادات لا تزال تحديا.
يركز البحث في مجال المنطق الحالي على تطوير النماذج التي تستخدم معرفة المنطقية للإجابة على أسئلة متعددة الخيارات. ومع ذلك، قد لا تكون النظم المصممة للإجابة على أسئلة متعددة الخيارات مفيدة في التطبيقات التي لا توفر قائمة صغيرة من إجابات المرشحين للاختي ار من بينها. كخطوة نحو جعل البحث منطق المنطقي أكثر واقعية، نقترح دراسة مسطحة المنطقية المفتوحة العضوية (OPENCSR) --- مهمة الإجابة على سؤال المنطقي دون أي اختيارات محددة مسبقا --- استخدام كموارد فقط حقائق المنطقية مكتوبة باللغة الطبيعية. OpenCSR تحديا بسبب مساحة قرارات كبيرة، ولأن العديد من الأسئلة تتطلب منطق متعدد القفز الضمني. كنعجا من OpenCSR، نقترح نماذج شديدة الفضلة للمناسبة متعددة القفز بشأن حقائق المعرفة. لتقييم أساليب OpenCSR، نقوم بتكييف العديد من معايير المنطق المنطقية الشائعة، وجمع إجابات جديدة متعددة لكل سؤال اختبار عبر مصادر الحشد. تظهر التجارب أن DrFact تفوق أساليب أساسية قوية من قبل هامش كبير.
منطق العموم الزمني هي مهمة صعبة لأنها تتطلب المعرفة الزمنية عادة غير صريحة في النص.في هذا العمل، نقترح نموذج فرقة لسبب المنظمات الزمنية.يعتمد نموذجنا على تمثيلات سياقية مدربة مسبقا من نماذج اللغة القائمة على المحولات (IE، Bert)، وعلى مجموعة متنوعة من طرق التدريب لتعزيز تعميم النموذج: 1) ضبط غرامة متعددة الخطوات باستخدام المهام العاطفية المحددة بعناية ومجموعات البيانات، و2) مهمة نموذجية مصممة مصممة خصيصا له مهمة تهدف إلى التقاط معرفة العمليات الزمنية.يتفوق نموذجنا إلى حد كبير على نهج ضبط الدقيقة القياسية والقواعد الأساسية القوية على DataSet MC-Taco.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا